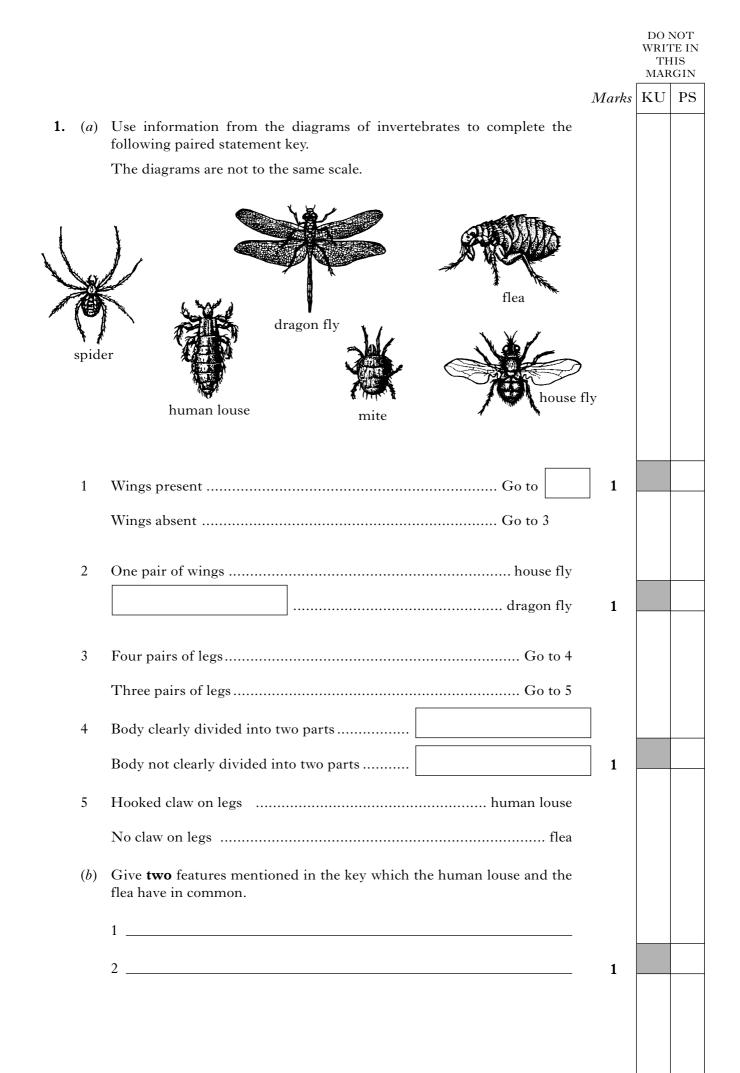
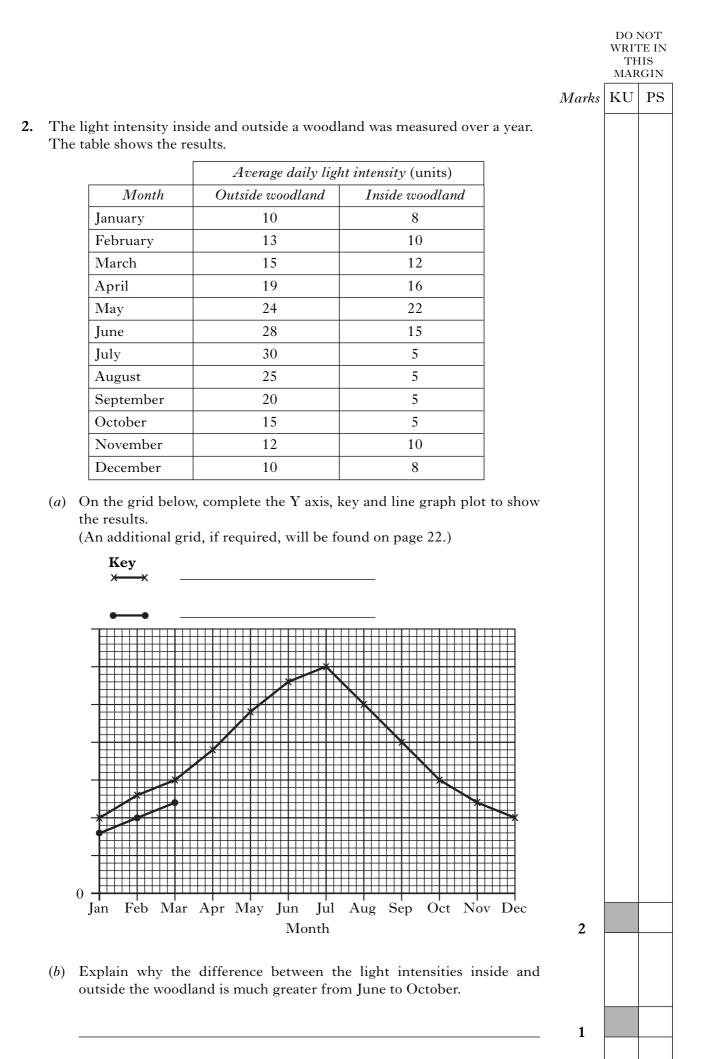
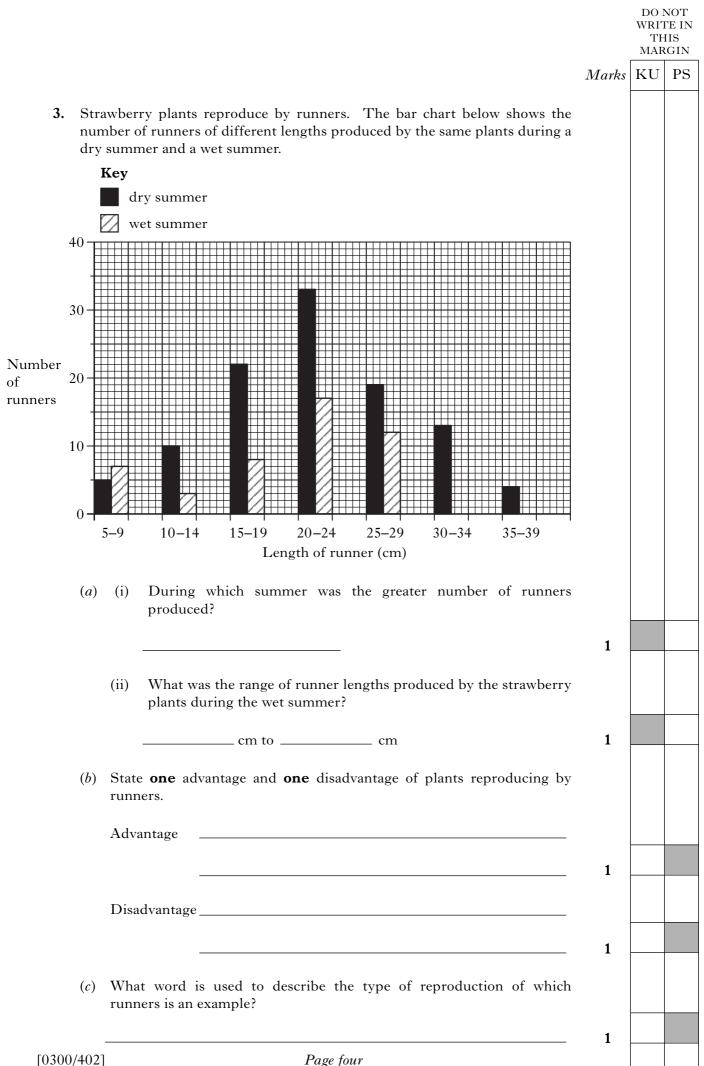
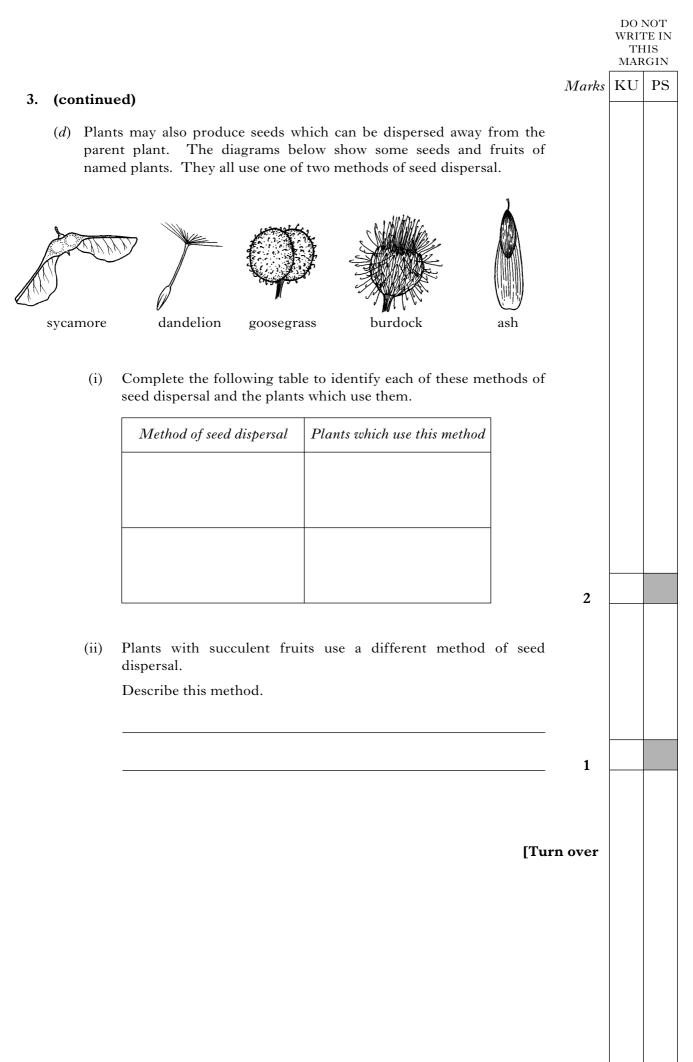
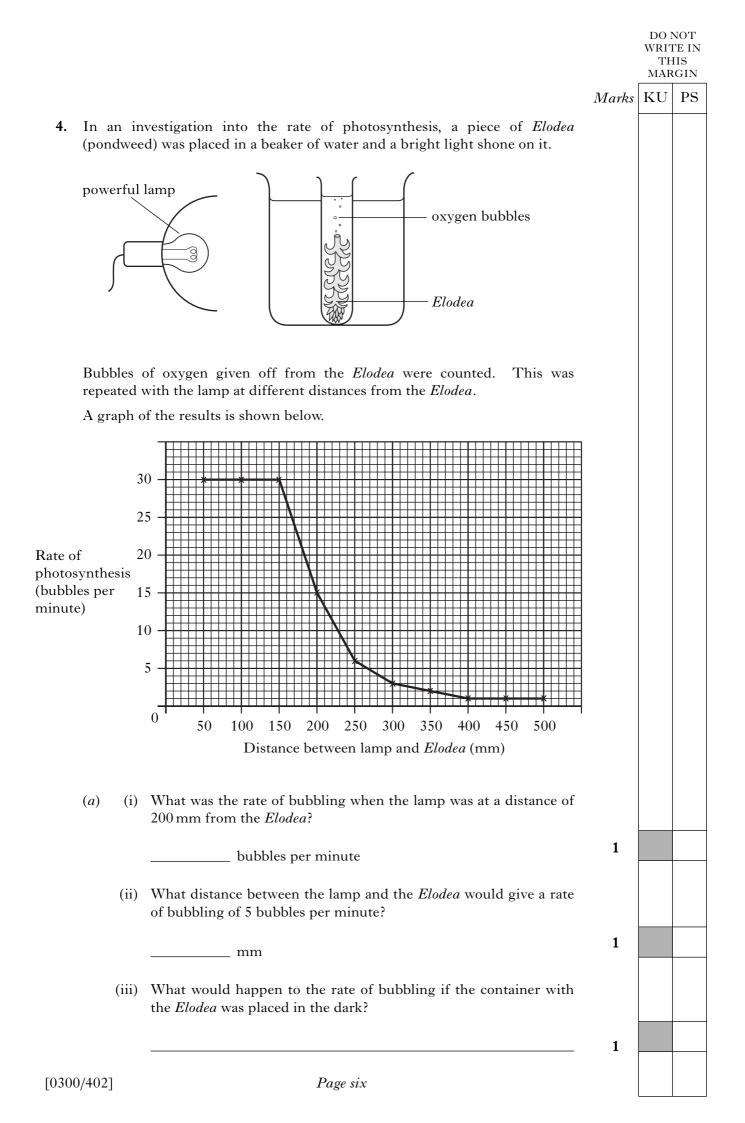

FOR OFFICIAL USE			

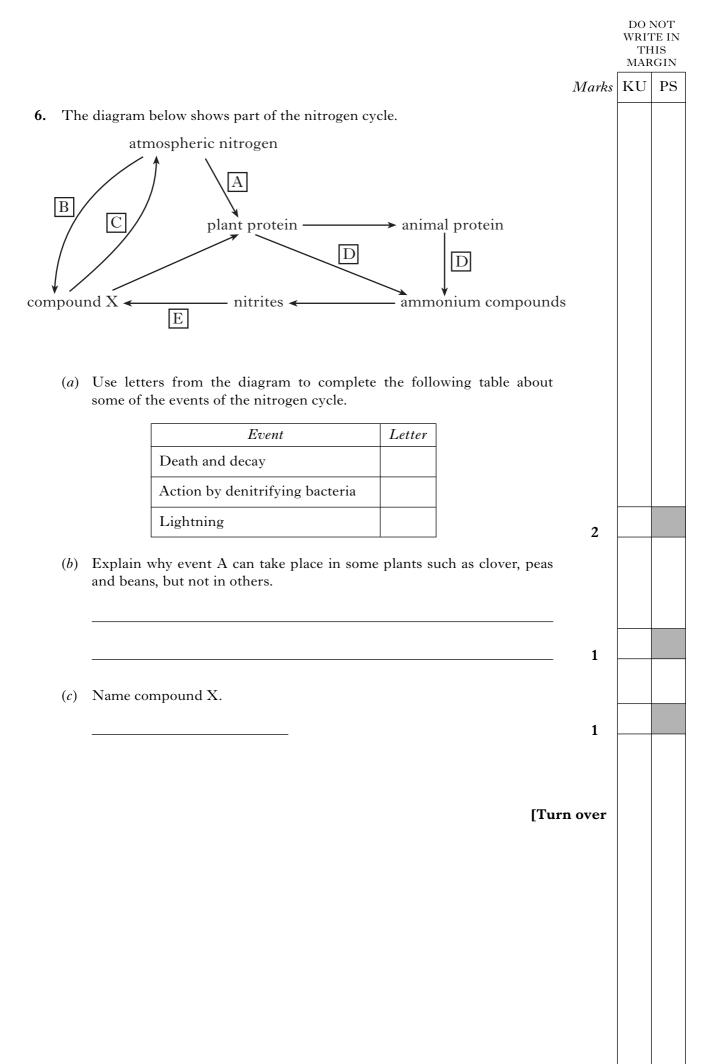

0300/402

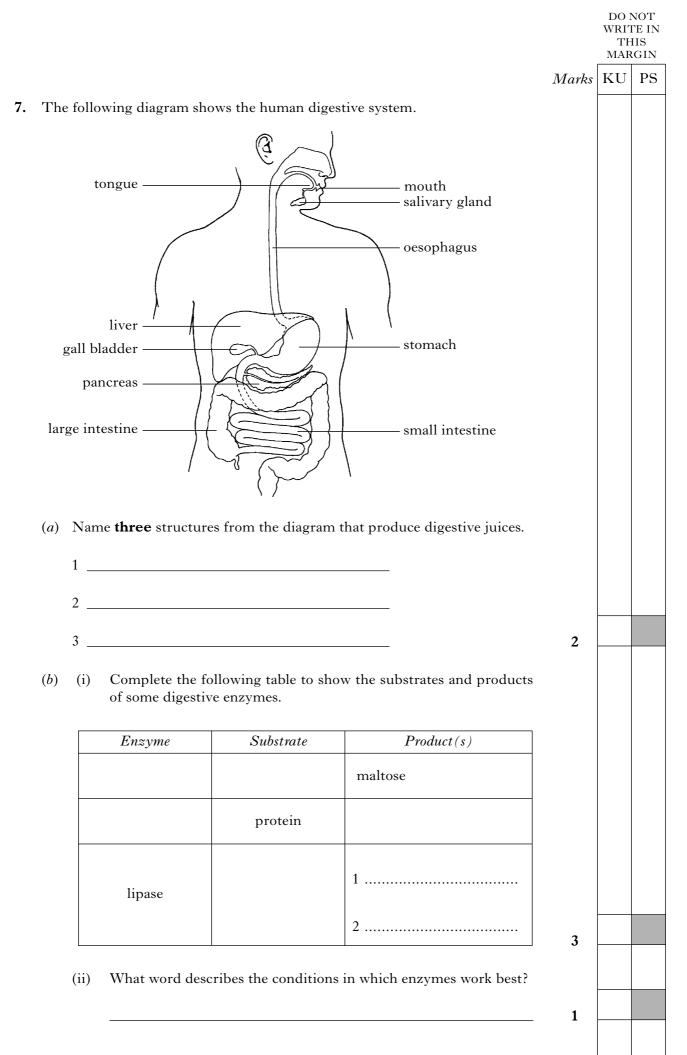

NATIONAL QUALIFICATIONS 2005 WEDNESDAY, 18 MAY 10.50 AM - 12.20 PM BIOLOGY STANDARD GRADE Credit Level

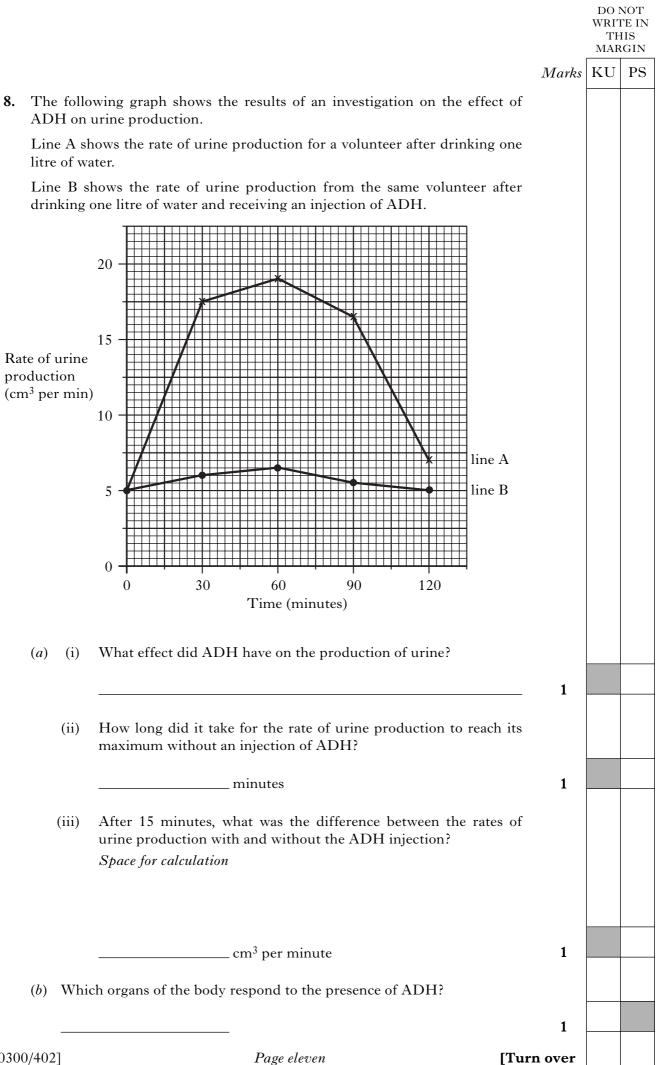

Fill in these boxes and read what is printed below.	
Full name of centre	Town
Forename(s)	Surname
Date of birth Day Month Year Scottish candidate number	Number of seat
1 All questions should be attempted.	
2 The questions may be answered in any order but spaces provided in this answer book, and must be w	
3 Rough work, if any should be necessary, as well a book. Additional spaces for answers and for rough book. Rough work should be scored through when t	n work will be found at the end of the
4 Before leaving the examination room you must give not, you may lose all the marks for this paper.	e this book to the invigilator. If you do








					WRI' Th	NOT FE IN HIS RGIN
				Marks	KU	PS
•	(cor	ntinue	ed)			
	(b)	(i)	At which distances between the lamp and the <i>Elodea</i> did light act as a limiting factor on the rate of photosynthesis? <i>Tick the correct box</i> . 50 - 150 mm 150 - 400 mm 400 - 500 mm	1		
		(ii)	Name one other factor which could limit the rate of photosynthesis.	1		
	(<i>c</i>)	were	investigation was carried out several times and the average results used to plot the graph. Why was this good experimental hique?	1		
				I		
			[Tur	n over		

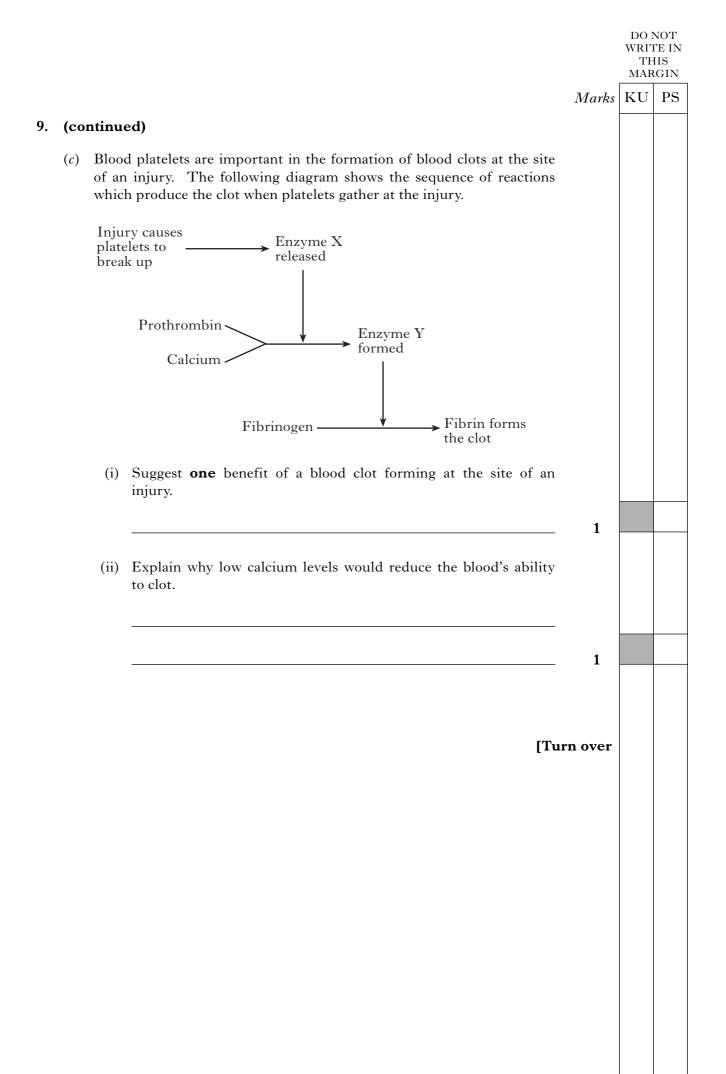

				Marks	WRIT TH MAR	IIS	
The water qu untreated sew		is tested to check that i	t is not affected by any	<i>WIATRS</i>		15	
The table giv	es information al	bout the number of bea number passed as suital	ches which were tested ble for swimming.				
Country	beaches tested suitable for swimming suitable for swimming						
England	271	239	88.2				
Scotland	93	68					
Wales	128	102	79.7				
thern Ireland	17	16	94.1				
				1			
•	ng the results fro	-	passed be used when rather than the actual	1			
comparir	ng the results fro	-	-	1			
 comparing number? (c) The sampresence 	ng the results from nples of water for of certain speci	from the beaches can	rather than the actual be examined for the ives information about				
 comparing number? (c) The sampresence 	ng the results from nples of water for of certain speci	from the beaches can es. This technique g	rather than the actual be examined for the ives information about				
 comparing number? (c) The sampresence 	ng the results from nples of water for of certain speci	from the beaches can es. This technique g	rather than the actual be examined for the ives information about	1			
 comparing number? (c) The sampresence 	ng the results from nples of water for of certain speci	from the beaches can es. This technique g	rather than the actual be examined for the ives information about	1			
 comparing number? (c) The sampresence 	ng the results from nples of water for of certain speci	from the beaches can es. This technique g	rather than the actual be examined for the ives information about	1			
 comparing number? (c) The sampresence 	ng the results from nples of water for of certain speci	from the beaches can es. This technique g	rather than the actual be examined for the ives information about	1			

5.

Northern Ireland

DO NOT WRITE IN THIS MARGIN KU \mathbf{PS} Marks 1 1

9. The table shows the number of people with each blood group in a population of 1500.


Blood group	Number of people
А	610
В	143
0	675
AB	72

(a) What percentage of the population has blood group O?Space for calculation

_____%

(b) In the population, the ratio of males to females with blood group AB is5:3. How many males would have blood group AB?Space for calculation

Number of males _____

DO NOT WRITE IN THIS MARGIN KU Marks \mathbf{PS} **10.** Read the following passage and answer the questions based on it. **An Explosive Medication** Angina is a pain in the chest that happens when the heart muscle does not receive enough blood. It occurs when branches of the artery that carries blood to the heart become narrowed or blocked. In 1867, T. L. Brunton, an Edinburgh doctor, discovered that a substance called amyl nitrite reduced both angina pain and blood pressure much better than the usual treatments which included whisky, brandy, ammonia and chloroform. Although amyl nitrite does relieve angina rapidly, the relief is short lived. Also in 1867, Alfred Nobel invented dynamite which is mainly nitroglycerin, a powerful and unstable explosive. It was known that nitroglycerin was similar in structure to amyl nitrite and it was soon discovered that diluted nitroglycerin was an excellent and longer lasting remedy for angina. It is used in a diluted form to make it safe and was renamed Trinitrin to avoid scaring both the pharmacists and the patients. However, it was a mystery how nitroglycerin worked in the body. The mystery remained unsolved until the 1970s when researchers discovered that it works by changing into nitric oxide. Outside the body, nitric oxide is a poisonous gas but it plays a vital part inside the body. Nitric oxide is the main messenger making blood vessels open wider so that more blood flows to the starved heart muscle, and this is why nitroglycerin helps angina patients. (a) What is the name of the artery which carries blood to the heart muscle? 1 (b) What is the cause of the chest pain referred to as angina? 1 (c) What made nitroglycerin appear suitable for investigating as a possible heart medicine? 1 (d) Nitroglycerin is diluted to make it safe. Why is this necessary? 1 (e) Complete the following flow diagram to show how nitroglycerin works in the body. blood vessels blood supply to heart muscle nitroglycerin 2 [0300/402] Page fourteen

				DO N WRIT TH MAR	E IN IS
			Marks	KU	PS
	liagr ositio	rams below show some of the muscles in the leg. on 1 Y Y V			
(a)		Describe the action of muscles X and Y as the leg moves from position 1 to position 2. Muscle X			
	(11)	Name the structures which attach muscles to bones.			
(b)	(i)	Draw a line from each of the following parts of the brain to correct function. Part Function cerebrum controls heart rate	1 its		
		cerebellum controls balance			
		medulla enables conscious thought and memory	2		
	(ii)	<u>Underline</u> one option in each bracket to describe the flow information in the nervous system.			
		Information from the environment is detected by the sense org	gans		
		and sent to the { central nervous system circulation system skin } which responds by			
		sending messages to the $\begin{pmatrix} muscles \\ blood \\ bones \end{pmatrix}$.	1		
[0300/402]		Page fifteen	[Turn over		

	xe 1960					1			
1-		Year	1960	1970	1980	1990	2000		
	-	annual yield per hectare)	4.05	5.32	7.14	8.21	10.05		
(a)	(i)	Calculate th period from <i>Space for ca</i>	1960 to 2		increase i	n yield ir	n the 40 ye	ear	
	(ii)	yield? Tick the cor	year peri					_	
		Space for ca 1960 – 1970 1970 – 1980				1980 – 1 1990 – 2		1	
(<i>b</i>)	any v	individual p value between t name is give	the lowe	st and the	highest.	rent yield	which can	be	
								1	

				DO N WRIT Th Mar	FE IN HS
			Marks	KU	PS
(co	ontinu	ed)			
(<i>c</i>)	(i)	The improvement in yield has been largely due to the production of new varieties of maize by <i>selective breeding</i> . Explain what is meant by this term.			
			1		
	(ii)	It is possible to produce new varieties of maize by introducing genes from species which do not interbreed with maize.			
		What general name is given to these techniques?	1		
			1		
(<i>d</i>)		rder to increase the variation available for selective breeding, plant ogists treat maize in ways that can increase the rate of mutation.			
	(i)	What is meant by the term <i>mutation</i> ?			
	(ii)	Give an example of a factor that can increase the rate of mutation.	1 -		
			1		
(e)		ners try to ensure the maximum yield of crops. This requires a tiful supply of plant nutrients and little competition from other ts.			
	Dese	cribe how each of these can be achieved.			
	Plen	tiful supply of plant nutrients			
	Red	uced competition from other plants	1		
			1		
		Tur	n over		
		[1u]			
0/40)2]	Page seventeen			

								FE IN HIS
						Marks	KU	PS
	table shows a comparison of the different types of cell respiration		wn of o	ne gram	n of glucose by			
		Type of	f cell rest	biration				
		A	B	C	-			
	Energy released (kJ)	17.1	0.9	0.9				
	Oxygen used (g)	1.07	0	0				
	Carbon dioxide produced (g)	1.47	0	0.49				
	Water produced (g)	0.6	0	0				
	Lactic acid produced (g)	0	1	0				
	Ethanol produced (g)	0	0	0.51				
(and	nd type nd type n of glu			1 1		
(c) ($\frac{1}{\text{type A}} : \frac{1}{\text{type B}} : \frac{1}{\text{type C}}$ Give one way in which the ch		energy	released	from food is	1		
i - -	mportant in the metabolism of c	ells.				1		
/4021	Dag	o oinhtoon						

13.

14. In an investigation on gas exchange, samples of breathed air were collected from several volunteers. The table shows the volumes of carbon dioxide and oxygen in 1000 cm³ of each sample.

Sample	Volume of carbon dioxide (cm ³)	Volume of oxygen (cm ³)
А	10	153
В	7	148
C	6	154
D	11	153
E	6	152
Average	8	

(a) Complete the table by calculating the average volume of oxygen in the samples.

 $Space \ for \ calculation$

(b) Calculate the percentage of oxygen in sample C. Space for calculation

_____%

(c) Name the chemical in the blood which combines with oxygen to transport it to the body tissues.

[Turn over

DO NOT WRITE IN THIS MARGIN

 \mathbf{PS}

KU

Marks

1

1

1

[0300/402]

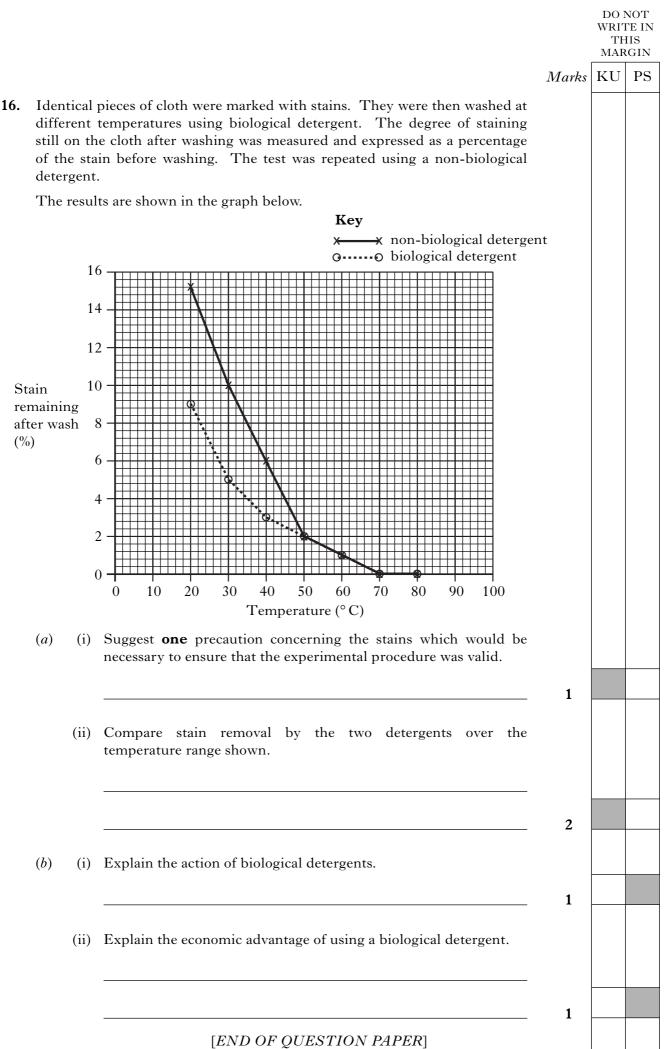
Page nineteen

	Component							
Fruit	Protein (g)	Carbohydrate (g)	Fat (g)	Water (g)				
bananas	1.0	23	0.3					
apples	0.4	12	0.1	87.5				
pears	0.4	10	0.1	89.5				
grapes	0.2	15	0.1					

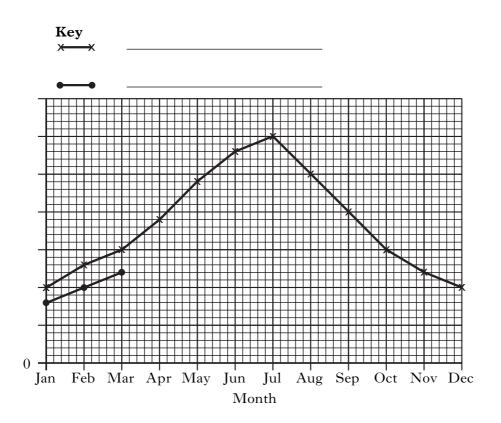
15. The table shows the composition of 100 g of four common fruits.

(a) Complete the table by adding the mass of water present in 100 g of bananas and grapes. Space for calculation

- (b) Which component of the fruits contains the most energy per gram?
- (c) Give two differences between the composition of apples and that of pears.
 - 1 _____ 2 _____
- (d) Suggest how it would be possible to minimise the effect of variations of individual fruits when measuring their composition.


1

DO NOT WRITE IN THIS MARGIN


 \mathbf{PS}

KU

Marks

ADDITIONAL GRAPH PAPER FOR QUESTION 2(a)

SPACE FOR ANSWERS AND FOR ROUGH WORKING

SPACE FOR ANSWERS AND FOR ROUGH WORKING