FOR OFFICIAL USE			

KU	PS	
Total Marks		

0300/402

NATIONAL QUALIFICATIONS 2010 THURSDAY, 27 MAY 10.50 AM - 12.20 PM BIOLOGY STANDARD GRADE Credit Level

Fill in these boxes and read what is printed below.	
Full name of centre	Town
Forename(s)	Surname
Date of birth Day Month Year Scottish candidate number	er Number of seat
1 All questions should be attempted.	
2 The questions may be answered in any order but spaces provided in this answer book, and must be well	
3 Rough work, if any should be necessary, as well a book. Additional spaces for answers and for rough book. Rough work should be scored through when	h work will be found at the end of the
4 Before leaving the examination room you must give not, you may lose all the marks for this paper.	e this book to the Invigilator. If you do

rks	KU	PS

1.	(a)	Two groups of pupils set pitfall traps in the school gardens to sample
		invertebrates living there. All traps were left for the same length of time.
		The results are shown in the following tables.

	Pitfall trap	Number of each type of invertebrate caught					
Group	number	spider	beetle	snail	earthworm	woodlouse	
A	1	2	1	2	0	1	
	2	3	2	1	0	0	

	Pitfall trap	Λ	umber of each type of invertebrate caught			
	number	spider	beetle	snail	earthworm	woodlouse
Group	1	2	3	2	1	1
B	2	2	0	3	1	2
	3	0	2	1	1	1
	4	3	2	1	0	1
	5	3	1	1	2	1

	(i)	How many to	mes of inv	ertebrate (did G	roup A	find?
١	(1)	1 10 w many t	pes or miv	er tebrate t	uiu O.	тоир л	mu:

____ types

_____ spiders

(ii)	Calculate the average number of spiders found in Group B's traps
	Space for calculation

(iii)	Explain why conclusions made by Group B from their results would be
	more reliable than conclusions made by Group A.

(iv)	Give one precaution which must be taken when setting up a pitfall trap,
	or other named sampling technique, and explain the reason for it

Sampling technique		
Precaution		

Reason _			

1

1

1

1

1

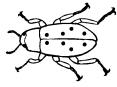
[0300/402]

71/	I_{α}	r	Ьc	
/ V		11	K.N	

arks	KU	$_{\mathrm{PS}}$

	and the second s
1. ((continued)
	iconfiniiea
. .	COMME

(b) The diagrams below show the invertebrates collected by the pupils. They are not drawn to scale.



Snail

Spider

Beetle

Woodlouse

/ • \	O 1 1	C 11 '	1	•		•	C	. 1 1 1 1 1 1
111	L'amplata tha	tollownn	7.037	1101100	1101	ormotion.	trom	the diagrams
11	Complete the	10110 WHIP	KCV	using	1111	OTHIALION	110111	the diagrams.
(-/			,					

1	Legs	G0 t0 2
	No legs	Go to
2	12 legs or more	Wood louse
	Fewer than 12 legs	Go to 3
3	Spots on body	Beetle
	No spots on body	
4	Shell	Snail

(ii) Give **three** features of the beetle mentioned in the key.

1		
2		
_		

1

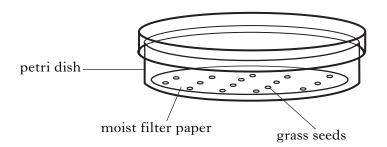
1

1

1

			Warrs	KU	P
(a)	Elect	tricity can be generated by using fossil fuels or nuclear fuels as energy ces.			
		one disadvantage of using each type of fuel.			
	Foss	il fuel			
			1		
	Nucl	lear fuel	_		
	TNUC				
			1		
(b)	(i)	Micro-organisms can obtain their energy by feeding on organic waste such as sewage.			
		Explain why each of the following events occurred after raw sewage was accidentally released into a river.			
		1 The number of micro-organisms in the river increased.			
			1		
		2 The number of fish in the river decreased.			
			1		
	(ii)	A group of students monitored the river using indicator species.			
		What is meant by the term "indicator species"?			
			1		
			•		

[0300/402] $Page \ four$


1

1

1

2

3. (a) An investigation was carried out into the effect of temperature on the germination of grass seeds.

Five identical petri dishes, each containing 20 seeds, were set up as shown in the diagram. Each dish was left in the dark at a different temperature. After seven days the percentage germination in each dish was calculated. The results are shown in the table below.

Temperature (°C)	10	18	27	36	45
Percentage germination	45	65	80	70	40

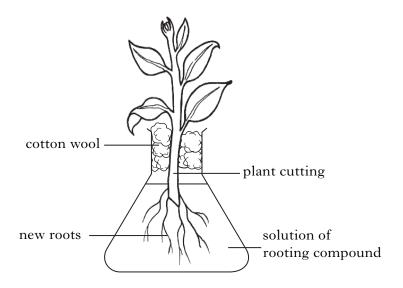
(i) From the results, what is the optimum temperature for the germination of this species of grass?

°C	2	

(ii) Name **one** factor, not already mentioned, which should be kept the same for all the dishes.

(iii)	What feature of the investigation was designed to increase the reliability
	of the results?

(b) Describe the changes in the percentage germination of seeds that occur over a range of temperatures.


[Turn over

[0300/402] Page five

KU PS

4. Rooting compound helps plant cuttings to produce new roots. The diagram below shows the apparatus used to find out how the concentration of rooting compound affects this.

Six flasks were set up, each with a different concentration of rooting compound.

After 21 days the number of roots and the lengths of the roots on each cutting were measured.

The results are shown on the following graph.

[0300/402] Page six

			Marks	KU
CO	ntinu	ed)		
(a)	(i)	Which two concentrations of rooting compound, used in the investigation, produced the same average root length?		
		mg/l and mg/l	1	
	(ii)	Using information from the graph, predict the average length of roots on cuttings grown in a concentration of 2·5mg/l.		
		mm	1	
	(iii)	Which concentration of rooting compound produces the greatest number of roots per cutting?		
		mg/l	1	
	(iv)	Describe how the average length of the roots on one cutting would be calculated.		
			1	
(b)		e one advantage to a gardener of producing plants from cuttings rather from seeds.		
			1	
(c)		t term is given to a group of plants grown from cuttings taken from a e plant?		
			1	
		[Turn over		

[0300/402] Page seven

1

1

1

s KU PS

_	()	The following	. 11 '		1 .	1		. 1
•	(a)	The following	table gives	: intormation	n about renr	oduction.	in various	animale
·	(0)	I IIC IOIIOWIIIE	table gives	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i about itpi	oddction	III various	amminais.

	Average number of eggs or young produced per year	Type of fertilisation	Where development takes place
cod	6 million	external	water
frog		external	water
blackbird	5	internal	inside eggshell
stoat	4	internal	inside female

- (i) A female frog produces a total of 4000 eggs over a five year period.
 - 1 Complete the table to show the average number of eggs she produces per year.

Space for calculation

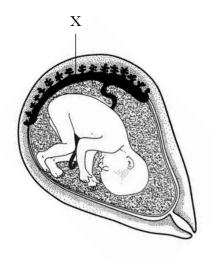
2 On average, two eggs from each female frog must survive to breeding age to keep the population constant. What percentage of this frog's **total** egg production does this represent?

Space for calculation

_____%

(ii) Explain why fish such as cod must produce far more eggs than mammals such as stoats to ensure the survival of the species.

(iii) Explain the importance of internal fertilisation to land-living animals.


[0300/402] Page eight

Marks [

KU	PS

5. (continued)

(b) The diagram below represents a stage in the development of a human fetus.

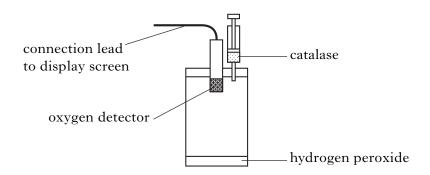
Name structure	\mathbf{Y}	and	oive	one	of ite	functions
rianne structure	Λ	anu	give	one	OI ILS	Tunctions.

Name _____

Function _____

[Turn over

2

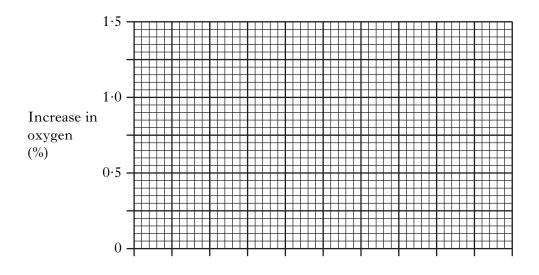

[0300/402] Page nine

DO NOT WRITE IN THIS MARGIN

Marks

KU PS

6. The apparatus shown below was used to study the effect of different temperatures on the activity of the enzyme catalase.


The catalase was added and reacted with the hydrogen peroxide to release oxygen. The increase in oxygen compared to the starting value was recorded as a percentage.

This was carried out at five different temperatures and the results are shown below.

Temperature (°C)	Increase in oxygen (%)
4	0.55
21	0.80
34	1.45
40	1.05
50	0.05

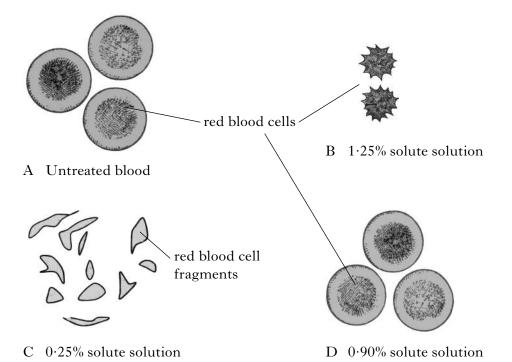
(a) Use the results to draw a line graph.

(An additional grid, if needed, will be found on Page twenty-three.)

2

[0300/402] Page ten

		11141143	KU	PS
(coı	ntinued)			
(b)	At which temperature was the catalase most active?			
	°C	1		
(c)	Why was it important that the catalase and the hydrogen peroxide were both at the required temperature before the catalase was added?			
		1		
(<i>d</i>)	Explain why there was no oxygen released when the experiments were repeated with different enzymes.	1		
		1		
(e)	Calculate the simple whole number ratio of percentage increase in oxygen at 34°C , 40°C and 50°C . Space for calculation			
	<u>34°C</u> : <u>40°C</u> : <u>50°C</u>	1		
	[Turn over			


6.

1

2

KU	PS

7.	The diagrams below represent red blood cells in different solutions as they would
	appear under a microscope.

(a) Use the information in the diagrams to predict the percentage solute concentration of human blood. Explain your answer.

Solute concentration _____ %

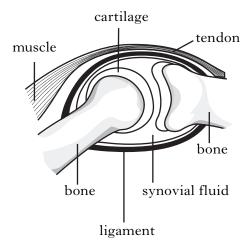
Explanation _____ %

(b) What has happened to the cells in diagram B? Explain the change in terms of water concentrations.

Description _____

Explanation _____

 $[0300/402] \hspace{3cm} \textit{Page twelve}$


2

1

1

s	KU	PS

8. The diagram below represents part of a finger joint.

(a)	(i)	The joint	needs a	a second	muscle	and	tendon	to m	ake it	function
		properly.	Explain	the need	for join	ts to	have n	nuscles	which	work in
		pairs.								

(ii) What feature of tendons ensures that all the force from a muscle contraction is transmitted to the bone?

(b) Name **two** parts of the joint which reduce friction.

1

2 _____

[Turn over

KU	PS
KU	P_{i}

9. Read the following passage and answer the questions based on it.

Young at Heart?

New research shows that decades of hard-won progress in reducing the risk of heart disease in America appears to be losing pace. Recent death rates from heart disease remain almost unchanged in men and women under 55 years old.

This trend comes at a time when even young people are increasingly likely to be obese, suffer from diabetes and have high blood pressure. Each of these increases heart attack risk.

Data from 1980 to 2002 showed that the death rate from heart disease had fallen. In the whole population there was a yearly reduction of 2.9 percent during the 1980s, 2.6 percent during the 1990s and 4.4 percent from 2000 to 2002.

However the numbers told a strikingly different story for people aged 35 to 54. The yearly death rate from heart disease fell by 6.2 percent in the 1980s, by only 2.3 percent in the 1990s and showed no reduction at all between 2000 and 2002.

The message is that heart disease has not gone away, and could become an even greater problem if people fail to pay attention to known warning signs. Dr F S Ford, a medical officer for the American government said, "Young adults should take stock of their lifestyles. Don't smoke and take at least 30 minutes of exercise per day. If you need to lose weight, you must burn more energy than you take in. Good habits should start early. Changes that lead to heart disease, for example hardening of the arteries, occur at an early age. Therefore it is especially important that children and young people develop appropriate habits that minimise their risk of heart disease later in life."

(<i>a</i>)	From the pass	age, identif	y three	factors	which	contribute	to the	risk	of heart
	disease.								

1 _____

2 _____

3 _____

(b) Complete the table below to show the changes in death rates for the whole population and for the 35–54 age group.

		ge yearly reduct rate from heart (%)	
	1980–1989	1990–1999	2000–2002
Whole population			
35–54 age group			

2

1

DO NOT WRITE IN THIS MARGIN

		Marks	KU	I
(coı	ntinued)			
(c)	According to Dr Ford, why is it important that "good habits should start early"?			
		1		
(<i>d</i>)	What cellular process is being referred to in the phrase "you must burn more energy"?			
		1		
	[Turn over			

M

Iarks	KU	PS

A tin containing 170 g of evaporated milk has the following label. 10.

Typical values per tin				
Energy	1156 kJ			
Protein	12·75 g			
Carbohydrate	17·47 g			
Fat	17·45 g			
Fibre	$0.00\mathrm{g}$			
Salt	0·33 g			

(a) What percentage of the total contents of the tin is protein? Space for calculation

(ii)	What component of the milk would provide most energy?

(b) Name the chemical elements present in fats.

________%

1

1

1

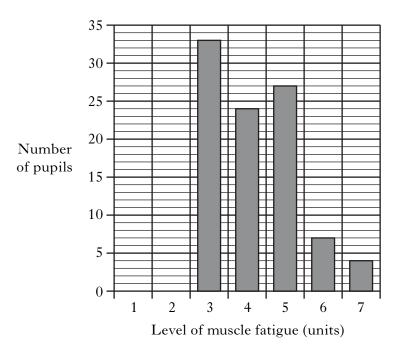
[0300/402] Page sixteen

										Marks	KU	PS
11.	(a)		erline one option in each brack hing correct.	et to m	ake the	follo	wing ser	ntence	about			
		Whe	n breathing out, the lung volume	e { stay	eases s the sar ceases	me } a	and as a 1	esult t	he			
		air p	ressure in the lungs decreases	ame $ brace$.						1		
	(b)		effect of changing the carbon don's breathing was investigated.	ioxide	concen	tratio	n in inha	ıled aiı	on a			
			table below shows the average rent concentrations of carbon did		ne of ai	r inh	aled eac	h minı	ite at			
			Carbon dioxide concentration in inhaled air (%)	0	2	4	6	8				
			Average volume of air inhaled (litres per minute)	8	12	16	24	60				
		(i)	How many times greater is the when the carbon dioxide concerns according to the space for calculation					_				
			times							1		
		(ii)	Calculate the average volume of minute when the carbon dioxid				_	_	each			
			Space for calculation									
			litres							1		
		(iii)	Calculate the increases in the average when the carbon dioxide change					_	inute			
			Express these increases as a simulation	ple wh	ole num	nber r	atio.					
			: 0-2% : 6-8%							1		
										_		

1

1

1


1

1

KU	PS

12. (a) School pupils each carried out an identical word processing task. The resulting level of muscle fatigue was measured on a scale from 1 (low) to 7 (severe).

The results for the 95 pupils tested are shown in the following bar chart.

(i) Medical experts using this scale classify any score of 5 or more as "requiring urgent investigation". What percentage of the pupils tested were in this category?

Space for calculation

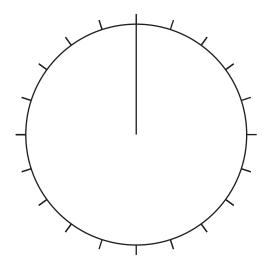
______ %

(ii) Give **two** conclusions which can be drawn from the results of this investigation.

1 _____

2 _____

(b) (i) What substance, produced by anaerobic respiration, causes muscle fatigue?


(ii) Explain why ensuring an adequate blood supply to muscles reduces the risk of muscle fatigue.

KU PS

13. The table below refers to egg production in the UK.

Living condition of hens	Eggs laid (percentage of total)
Living in cages	65
Living in barns	5
Free-range	30

(a) (i) Use the information from the table to complete the pie chart.(An additional chart, if needed, will be found on Page twenty-three.)

(ii) The total number of eggs laid per year in the UK is 30 million. How many of these are laid by free-range hens? Space for calculation

_____ eggs

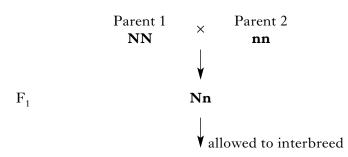
1

2

(b) Modern varieties of hens can lay up to 300 eggs per year. Their ancestral wild varieties laid about 20 eggs per year.

(i) Calculate this increase in egg production as a percentage.Space for calculation

1


(ii) How has this improvement in egg production been achieved?

1

KU	PS

14. Polydactyly is a condition which results in extra toes in mice. It is controlled by the dominant form of a gene (**N**). The normal phenotype is controlled by the recessive form (**n**).

The diagram below shows a cross between two mice of different genotypes.

 \mathbf{F}_2

F ₁ gametes	N	n
N		
n	Nn	

- (a) (i) Complete the diagram above to show the possible genotypes of the F_2 generation.
 - (ii) Give the phenotypes of each of the following mice.

Parent 1

Parent 2 _____

F₁ _____

(iii) What term is used to describe the type of variation shown by these phenotypes?

(b) Why are the actual phenotype ratios in the F_2 generation often different from the predicted ones?

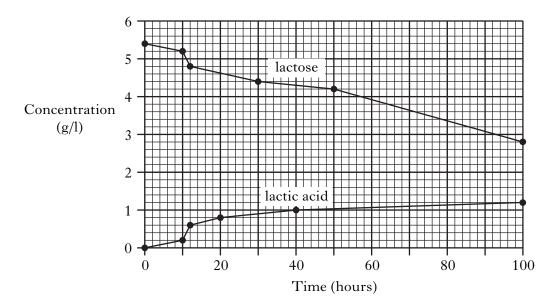
1

1

2

1

				Marks	KU	PS
15.	(a)		ose can be broken down into simple sugars using the enzyme invertase. diagram below represents how this can be done commercially.			
			ose solution is constantly being added and the products are constantly g removed.			
	s	ucros	reactor vessel containing invertase			
			product rich in simple sugars			
		(i)	What name is given to this type of process?			
		(ii)	Explain why the enzyme does not leave the reactor vessel along with the	1		
			products.			
	(b)	(i)	Genetic engineering techniques are used to produce enzymes which are used in biological washing powders. Which type of micro-organism is modified to produce the appropriate enzymes?	1		
				1		
		(ii)	What is transferred from one organism to another during genetic engineering?			
				1		
	(c)		ing the brewing of beer, ingredients including yeast and malted barley are d to a fermentation vessel.			
		(i)	What does the malted barley provide for fermentation which ungerminated barley does not?			
				1		
		(ii)	How does sterilising the fermentation vessel before the raw materials are added help to provide optimum conditions for the yeast?			
				1		


[Turn over for Question 16 on Page twenty-two

1

1

KU PS

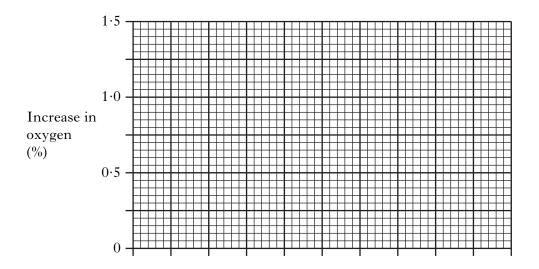
16. The concentrations of lactic acid and lactose in a milk sample were measured every two hours for 100 hours. The results are shown in the graph below.

(a) (i) What evidence from the graph suggests that lactose is converted into lactic acid?

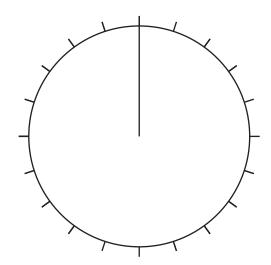
(ii) What evidence from the graph supports the theory that lactose is being converted into compounds other than lactic acid?

______1

(b) Calculate the average hourly rate of lactose breakdown over the 100 hours of this investigation.


Space for calculation

_____ g/l/hour


[END OF QUESTION PAPER]

SPACE FOR ANSWERS AND FOR ROUGH WORKING

ADDITIONAL GRID FOR QUESTION 6(a)

ADDITIONAL PIE CHART FOR QUESTION 13(a)(i)

SPACE FOR ANSWERS AND FOR ROUGH WORKING