

2001 Marking Scheme

2001 Adv Higher Chemistry Marking Scheme					
MC Qu	Correct Answer	% Correct	Reasoning		
1	D	67	EA Wavenumber is $1/_{\lambda}$: increase in wavelength gives decrease in wavenumber B velocity (c) is constant (3x10 ⁸ m s ⁻¹) C As $\lambda = c/_{f}$: increase in wavelength gives decrease in frequency D Purple/Blue end of EM Spectrum is 450nm and red end is 700nm		
2	С	88	green light is absorbed \therefore red & blue light is transmitted \rightarrow red+blue = purple (magenta)		
3	A	65	Colour in compounds of transition metals is caused by $d o d$ electron transitions		
4	В	53	Most covalent character \therefore smallest electronegativity difference \therefore P and H both 2.2		
5	С	85	⊠A 4xO = -8 & ion has 1- charge ∴ Mn=+7 ⊠B 4xO = -8 & ion has 2- charge ∴ Mn=+6 ☑C 4xO = -8 & ion has 3- charge ∴ Mn=+5 ⊠D 6xCN ⁻ ions = 6- charge & complex has overall 3- charge ∴ Mn=+3		
6	В		■ A $C_4H_9Br + OH^- \rightarrow C_4H_9OH + Br^-$ and $C_2H_5Br + C_2H_5O^- \rightarrow C_2H_5OC_2H_5 + Br^-$ ■ B ether molecules form hydrogen bonds with water molecules but not other ether molecules ■ C Both alkanols and ethers are used as solvents ■ D Both alkanols and ethers are flammable carbon-based compounds		
7	С	-	Rate Determining Step is the slow reaction ∴ 3 reactant molecules involved in RDS ∴ order of reaction = 3		
8	Α		1 mol reactant gas molecules → 2 mol gas product molecules ∴ <u>low pressure</u> favours forward reaction Forward reaction is endothermic ∴ <u>high temperature</u> favours forward reaction		
9	С		2 mol of Cl ⁻ ions are part of complex and 1 mol of Cl ⁻ ions are free ions (outside complex) [Cr(H2O)4Cl2] ⁺ Cl ⁻ .2H2O meets above criteria		
10	В	63	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
11	В	75	Nickel atoms have 28 electrons with electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$ $\blacksquare A 3d^8$ means no empty d-orbitals (three pairs and two unpaired) $\square B 2p^6 + 3p^6 = 12$ electrons $\blacksquare C 3d^8$ is not full as d-orbitals hold a maximum of 10 electrons. $\blacksquare D 3d^8$ contains 3 pairs of electrons and 2 unpaired electrons		
12	A	69	Image: Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5"		
13	A	61	Ammonia solution + hydrochloric acid \rightarrow ammonium chloride + water Ammonium chloride is acidic so pH range of indicator must be below 7		
14	D	77	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = 0$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{178 \times 1000 \text{ J mol}^{-1}}{161 \text{ J K}^{-1} \text{ mol}^{-1}} = 1106 \text{ K}$		
15	D	50	FeCl ₃ polarises Cl ₂ molecule and δ + end of the Cl ₂ molecule is electrophilically substituted onto the benzene ring and a hydrogen leaves the ring to form a molecule of HCl with the negative end of the chlorine molecule.		

			569 kJ of energy released bond forming is exothermic		
16			Forming 1 mole of H-F bonds would produce 569kJ of energy.		
	D	34	 ☑A bond breaking and bond forming in this reaction ☑B bond breaking ∴ endothermic reaction ☑C bond breaking and bond forming in this reaction 		
			EC bond breaking and bond forming in this reaction		
			\square D H(g) + F(g) \rightarrow HF(g) forms 1mol of H-F bonds from free gaseous H & F atoms		
			In Ellingham diagrams, upper line is reversed		
17	С	65	$2Zn + O_2 \rightarrow 2ZnO$ needs to be upper line to be reversed		
$2Zn + O_2 \rightarrow 2ZnO$ is upper line at temperatures above 1300°C					
	D	64	■A 2 nd Ionisation energy of Ca endothermic		
18			B Bond breaking step : endothermic		
			⊠B Bond breaking step ∴ endothermic ▼C 1 st Electron Affinity is exothermic but not as big as Lattice enthalpy ☑D Lattice Enthalpy of CaBr₂ is much more exothermic than electron affinity		
			E° = -0.26V + 0.37V = +0.11V n=1 as 1mol of electrons transferred in equation		
19	۸	60	$\Delta G^{\circ} = -nFE^{\circ} = -1 \times 96500 \times 0.11 = \underline{negative value}.$		
19	A	00			
			Feasible reactions have a equilibrium constant K greater than 1		
			A Reactants are not elements in natural state		
20	В	72	ØB Formation of 1 mole of a substance from its elements in their natural state.		
		. –	$\boxtimes C Ca(g)$ is not the natural state of calcium at 298K		
			D Reactants are not elements in natural state		
	_	_	6 x Reaction 0 : $6C + 6O_2 \rightarrow 6CO_2$ $\Delta H= -2364 \text{kJ mol}^{-1}$ 7 x Reaction 0 : $7H_2 + 3\frac{1}{2}O_2 \rightarrow 7H_2O$ $\Delta H= -2002 \text{kJ mol}^{-1}$		
21	С	91	-1 x Reaction Θ : $6CO_2 + 7H_2O \rightarrow C_6H_14 + 9\frac{1}{2}O_2$ $\Delta H = +4160 \text{ kJ mol}^{-1}$		
			Add $0' + 0' + 0'$ $6C + 7H_2 \rightarrow C_6H_{14}$ $\Delta H = -206 \text{ kJ mol}^{-1}$		
	С		EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV		
22		71	Velocity 3x10 ⁸ m s ⁻¹ Wavelength short Image: Short		
			Frequency high — low		
23	Δ	61	$C_2H_5O^-$ is negative ion so nucleophilic attack		
23	A	01	nucleophilic substitution as $C_2H_5O^-$ joins as Br ⁻ leaves molecule.		
	A	52	⊠A methanoic acid has lowest pKa value ∴ most acidic		
24			Example acid has lowest provide most acidic B alkanols are not acidic (they are neutral) Schemel has a bisher pK value than mathemais acid (n12 data backlet)		
24			$\boxtimes C$ phenol has a higher pK _a value than methanoic acid (p13 data booklet)		
			\blacksquare D propanoic acid has a higher pKa value than methanoic acid (p13 data booklet)		
25	В	83	Decreased volatility as increased chain length increase London Dispersion Forces		
	D	05	Decreased solubility in water as hydrocarbon chain length increases		
	D		A Forms derivative with both which then needs to be separately checked for melting point		
26		87	E B Lithium aluminium hydride would reduce both an aldehyde and a ketone		
			⊠C Hydrogen cyanide would react with both across the C=O double bond. ☑D Tollen's Reagent would give a silver mirror with an aldehyde but not a ketone		
27	С	94			
21	C		IR absorption at 2725cm ⁻¹ indicates aldehyde -CHO group present (p14 data booklet)		
28	D	61	Carbonyl (C=O) group properties changed as COOH group does not react with 2,4-dinitrophenylhydrazine Hydroxyl (-O-H) group properties changed as group dissociates and releases H ⁺ ions (i.e. acidic)		
	D	D 40	-OH groups do not normally release H ⁺ ions but proximity to benzene ring allow dissociation		
29			-NH2 groups accept H ⁺ ions by forming dative covalent bond at the N lone pair of electrons. Proximity to benzene ring makes this less likely to happen.		
			☑A Agonists produce the biological response of the natural substrate		
20	A		B Antagonists bind with the binding site of the receptor but do not produce the biological response		
30			EC Pharmacophore is the shape which fits the binding site of the receptor		
			🗷 D A receptor binds to the drug/natural substrate		

The st	yle of quest	ion in Q31-33 has been abandoned but the content of the questions is still relevant.		
31a	C+E	$\square C$ Melting increases the disorder \rightarrow increase in disorder increases the ΔS°		
		$ earrow E $ melting is an endothermic process hence a positive ΔH^{o} .		
31b	В	Equilibrium constant is greater than 1 (or =1) in feasible reactions		
		${\scriptstyle\Delta}$ G equals zero when a system is in equilibrium. Both forward and reverse		
31c	F	reactions happen at equal rate and a positive value of ΔG for either reaction		
		would make that reaction not feasible.		
31d	D	k is the constant in the kinetics equation		
32a	D+F	D CuO is insoluble metal oxide (NB: soluble metal oxides dissolve in water to form alkalis)		
JZU	(Both for 1 mark)	\square F Hydrides react with water to form hydrogen and alkali (H ⁻ + H ₂ O \rightarrow H ₂ + OH ⁻)		
		🗷 A linear		
		🗹 B trigonal bipyrimidal		
32b	В	⊠C trigonal (AlCl₃ is covalent)		
520	В	ID ionic		
		INE trigonal		
		Image: Imag Image: Image: Imag		
		⊠A linear		
		🗷 B trigonal bipyrimidal		
32c	A	EC trigonal (NB: AICl3 is covalent)		
526		ID ionic		
		🗵 E trigonal		
		Image: Imag Image: Image: Imag		
32d	F	LiAlH4 is an reducing agent which reduces alkanals to primary alkanols, etc.		
	C+D (Both for 1 mark)	⊠A C6H5 - CH 2 - CHO		
33		⊠B CH3 - CH2 - CH2 - CHO		
		⊠c C ₆ H₅ - CHO		
		⊠d H - CHO		
		⊠E CH3 - CH2 - CHO		
		⊠F CH3 - CH(CH3) - CH 2 - CHO		

2001 Adv Higher Chemistry Marking Scheme			
Long Qu	Answer	Reasoning	
1a	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶	or [Ne] 3s ² 3p ⁶ 3d ⁶ ([Ar]3d ⁶ not acceptable)	
1b	Orbitals are equal in energy	All five d-orbitals are of equal energy in isolated atoms. In the presence of ligands, the d-orbitals split into two levels.	
1c(i)	in isolated Fe ²⁺ ions	Degenerate means the electron orbitals are of equal energy	
1c(ii)	Ligands split d-orbitals into two levels	Ligands pull the d_{z^2} and $d_{x^2 \mbox{-} y^2}$ orbitals apart from the remaining d-orbitals	
1c(iii)	Light energy excites electron from lower level to upper level	Visible light wavelength is absorbed by electron in lower d-orbital to excite/promote electron to upper d-orbital level (a d-d transition). This wavelength of visible is removed and the complimentary colour is observed.	
2a	Iodine will react with any unsaturated fat present	I ₂ reacts with C=C bonds in unsaturated fats/oils. This method will extract the sulphite so that it can be titrated more accurately.	
2b	starch	Starch turns blue/black in the presence of Iodine	
2c(i)	3.04 ×10 ⁻⁵ mol	No of mol = volume x concentration = 0.0152 x 0.002 = 0.0000304mol	
2c(ii)	0.0383%	$SO_3^{2-} + H_2O + I_2 \rightarrow 2I^- + 2H^+ + SO_4^{2-}$ $1 \text{mol} \qquad 1 \text{mol}$ $3.04 \times 10^{-5} \text{mol} \qquad 3.04 \times 10^{-5} \text{mol}$ $1 \text{ mol of } \text{Na}_2 \text{SO}_3 = (2 \times 23) + (1 \times 32.1) = (3 \times 16) = 46 + 32.1 + 48 = 126.1g$ $\textbf{mass} = \textbf{n}_0. \text{ of mol} \times \textbf{gfm} = 3.04 \times 10^{-5} \text{ mol} \times 126.1g \text{ mol}^{-1} = 3.83 \times 10^{-3}g$ $\% \text{mass} = \frac{\text{mass of } \text{Na}_2 \text{SO}_3}{\text{total mass}} = \frac{3.83 \times 10^{-3}}{10} \times 100 = 0.0383\%$	
3a (i)	$2F^{-}(l) \rightarrow F_{2}(g) + 2e^{-}$		
3a (ii)	Fluorine is below MnO4 ⁻ in the electrochemical series		
3b	(Cl ₂) X = 0 (Cl ⁻) Y = -1 (ClO ⁻) Z = +1	Oxidation numbers for all <i>elements</i> is zero ClO ⁻ : as O is -2 so Cl must be +1	
4a	K _w = [H⁺][OH⁻]	$\mathbf{K}_{w} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]} \xrightarrow{\text{But } [H_{2}O] = 1}_{\text{as water is also the solvent}} \mathbf{K}_{w} = [H^{+}][OH^{-}]$	
4b	K _w increases as water dissociates more as temp increases	K_w increases because [H ⁺] and [OH ⁻] are increasing. [H ⁺] and [OH ⁻] increase as there is more dissociation of H ₂ O	
4c	6.6	$K_{w}=[H^{+}][OH^{-}] = [H^{+}]^{2} = 5.48 \times 10^{-14} \qquad \text{NB} [H^{+}] = [OH^{-}]$ $[H^{+}] = \sqrt{(5.48 \times 10^{-14})} = 2.34 \times 10^{-7} \text{ mol } I^{-1}$ $log_{10}[H^{+}] = -6.6$ $-log_{10}[H^{+}] = 6.6$ $pH = 6.6$	

-	Benzene does not	or C to C bond length in benzene in equal but C=C double bonds
5a	react with Br2	is shorter than C-C single bonds.
		Bond Breaking Bond Forming
		3×H-H = 3×436 =1308kJ
		3×C=C = 3×612 =1836kJ
		3xC-C = 3x348 =1044kJ 6xC-C = 6x348 =2088kJ
E I.		6xC-H = 6x412 = <u>2472kJ</u> 12xC-H = 12x412 = <u>4944kJ</u>
5b	-164 kJ mol ⁻¹	total endothermic = <u>6660kJ</u>
		ΔH_1 = Σ endothermic steps - Σ exothermic steps
		= +6660kJ - 7032kJ
		= -372kJ
		stability factor = $\Delta H_1 - \Delta H_2$ = -372 - (-208) = -164kJ mol ⁻¹
F	6 delocalised	The 3 delocalised electrons above 6 carbon ring and the 3 delocalised
5c	electrons in ring	electrons below the carbon ring flatten the carbon ring and stabilise the structure.
		$CH_3COOH + H_2O \implies H_3O^+ + CH_3COO^-$
6a	CH₃COO ⁻	Acid Base Conjugate Acid Conjugate Base
		Donates H* Accepts H* Formed when Base accepts H* Formed when Acid loses H* 1 I I I I I
		1 mol Na ⁺ CH ₃ COO ⁻ = 23 + 24 + 3 + 32 = 82g
6b(i)	0.456mol l ⁻¹	no. of mol = $\frac{mass}{gfm}$ = $\frac{3.74}{82}$ = 0.0456mol
	0.43011011	
		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.0456\text{mol}}{0.1 \text{ litres}}$ = 0.456mol l ⁻¹
		pH = pK _a - log <u>[acid]</u> = 4.76 - log <u>0.2</u> = 4.76 - log(0.439)
6b(ii)	5.12	
		= 4.76 - (-0.358) = 5.12
		OH ⁻ ions added will react with H ⁺ ions present. H ⁺ ions then replaced as
6b(iii)	Answer to include:	equilibrium shifts to replace H ⁺ ions by dissociation of acid molecules
		$(CH_3COOH \Rightarrow CH_3COO^- + H^*)$
7.	[I2]cyclohexane	[solute]product solvent
7a	K=[[2]cyclohexane [[2]water	K= [solute]product solvent [solute]reactant solvent
		no. of mol = v x c = 0.11 x 0.10 mol l ⁻¹ = 0.01mol I ₂ (in aqueous layer at start)
7b(i)	0.01 - x	x mol left in aqueous layer after equilibrium formed
, D(i)		\therefore (0.01 - x) mol I ₂ in cyclohexane layer.
		· · ·
7b(ii)	7.14x10 ⁻³ mol l ⁻¹	$0.4 = \frac{[0.01 - x]}{[x]} \therefore 0.4 [x] = [0.01 - x] \qquad \therefore 1.4[x] = 0.01$
		$\therefore [x] = \frac{0.01}{1.4} = 7.14 \times 10^{-3} \text{ mol } l^{-1}$
-		Partition coefficient is independent of the volume of either
7c (i)	No change	solvent.
		The concentration of the iodine in the cyclohexane is the same as
7 c(ii)	No change	half the volume of cyclohexane would extract less iodine from the
		aqueous layer.
	Answer must	Nucleophiles contain either a negative charge or a lone pair of electrons and attack a centre of positive charge on a molecule. (1mark)
8a	include:	Nucleophile attacks a carbon with a δ + charge and replaces (substitutes) the
		atom/group with the δ - charge which leaves the molecule under attack (1mark)

8b	Rate = k[CR3Br]	Rate Determining Step (RDS) is always the slow step. Only species which appear in the slow step appear in the rate equation. (S_N1 reaction)
8c	x = 2 y = 0.5	SN2 reaction ∴ Rate = k[CR ₃ Br][OH ⁻] ∴ order of both reactants = 1 In Experiment 2: doubling [OH ⁻] while double relative rate ∴ x=2 In Experiment 3: Doubling [CR ₃ Br] will double relative rate from 1 → 2 Relative rate increase from 2 → 10 must result from increasing [OH ⁻] x5
8d	Answer should include:	Bulky aromatic rings on molecule will hinder the nucleophilic attack of OH ⁻ ions towards the δ + on the C atom in the C-Br bond.
9a	4	Each of the four P atoms has one lone pair of electrons
9b	60°	As each bond is equal in size each triangle of P atoms must be an equilateral triangle.
9с	2	triple bonds contain: 1 sigma (σ) bond and 2 pi (π) bonds double bonds contain: 1 sigma (σ) bond and 1 pi (π) bond
9d	2 mol of P ₂ (g) molecules is more disordered than 1 mol of P ₄ (g) molecules	An increase in entropy means an increase in disorder.
10a	Molecule C	In compound C, both bonds off the left carbon in the C=C bond are C-H bonds. These bonds need to be different to have geometric isomerism (i.e. cis- and trans- versions)
10ь	Molecule C	CH₂=CH'''''CHO H
10c(i)	Diagram showing:	H = H = C + C + C + C + C + C + C + C + C + C
10c(ii)	Compound D	Markovnikov's Rule: Hydrogen tends to add to the carbon in the C=C bond which has the most hydrogens already attached to it. In molecule C, C_1 had 2H and C_2 has 1H atom so hydrogen in H-Br tends to add to C_1 and Br adds to C_2 forming compound D
11a	methylpropanedioic acid	Or 2-methylpropanedioic acid but methyl must be on C_2

11b(i)	[COOH]⁺	COOH : $m=(1\times12)+(2\times16)+(1\times1) = 12+32+1 = 45$ [COOH] ⁺ : $m/z = \frac{45}{1} = 45$
11b(ii)	2xH atoms	Molecule A has mass=118 (heaviest peak)
	1xO atom	118 - 100 = 18 \rightarrow H and OH or 2H and 1O have mass = 18
11c	COOH - peak at δ=10→ CH2 -peak at δ=2.1→2.8 CH2 peak double size of COOH peak	h_{11} h_{10} h_{10} h_{11} h_{10} h
12a	8	CsCl has 8:8 co-ordination and NaCl has 6:6 co-ordination
12b(i)	0.96	Radius Ratio of CsCl = (Cs ⁺ radius)÷(Cl ⁻ radius) = ^{174pm} / _{181pm} = 0.96
12b(ii)	KF will have same ionic structure as CsCl	Radius Ratio of KF = (K⁺ radius)÷(F⁻ radius) = ^{133pm} / _{133pm} = 1.00
12c(i)	Diameter of K ⁺ ion too big to	
	fit into [15]-crown-5-ether	Diameter of in [15]-crown-5-ether is 170-220pm
120(::)	[18]-crown-6-ether	[18] \rightarrow 18 Carbon and Oxygen atoms in ether
120(11)	[10]-ci own-o-einei	-6- \rightarrow 6 oxygens in ether