		Traffic L		ight
	AH Chemistry: Inorganic Chemistry	red	amber	green
	Section 1a. Electromagnetic Radiation & Atomic Spectra		ar	ស
1 2 4	Electromagnetic radiation are waves that have both wavelength and frequency wavelength wavelength Wavelength λ : (visible light wavelengths are usually given in nanometres) the distance between wave crest to wave crest Frequency f: (frequency is measured in Hertz) the number of waves per second Speed c: All electromagnetic waves travel at 3×10^8 m s ⁻¹ The equation c= f λ shows the relationship between wavelength and frequency. $C = f \times \lambda$ $f = \frac{C}{\lambda}$ $\lambda = \frac{C}{f}$	$\overline{\mathbf{S}}$		٢
3	The radiation types of electromagnetic spectrum can be put in order of wavelength. EM Radiation Gamma rays X rays UV radiation Infra-Red light Microwaves Radio & TV waves Wavelength Iow Infra-Red radiation Microwaves Note the second sec	3	:	0
5	 Electromagnetic radiation has a dual nature. It can be described as a wave with wavelength and frequency a particle 	3		\odot
6 7 9	 Electromagnetic radiation can be absorbed or emitted by matter the radiation is behaving as a stream of particles called photons photons have quantised energy proportional to the frequency of the radiation higher the frequency the higher the energy (lower the wavelength the higher the energy) photons in high frequency radiation can transfer greater amounts of energy than photons in low frequency radiation. 	3	:	0
8 13 14	When a photon is absorbed, energy is gained by electrons being promoted to higher energy levels. When a photon is emitted, energy is lost by an excited electron moving from higher energy level to a lower energy level	$\overline{\mathbf{O}}$		٢
10 11 12	The energy associated by a single photon is: $\mathbf{E} = \mathbf{h} \times \mathbf{f}$ or $\mathbf{E} = \frac{\mathbf{h}\mathbf{C}}{\lambda}$ As energy is often given in the unit kJ mol ⁻¹ The energy associated by a one mole of photon is: $\mathbf{E} = \mathbf{L} \times \mathbf{h} \times \mathbf{f}$ or $\mathbf{E} = \frac{\mathbf{L}\mathbf{h}\mathbf{C}}{\lambda}$ $\frac{\mathbf{Symbol}}{\mathbf{E}} = \mathbf{L} \times \mathbf{h} \times \mathbf{f}$ or $\mathbf{E} = \frac{\mathbf{L}\mathbf{h}\mathbf{C}}{\lambda}$ $\frac{\mathbf{Symbol}}{\mathbf{E}} = \frac{\mathbf{L}\mathbf{n}\mathbf{r}\mathbf{S}}{\mathbf{E}}$ $\frac{\mathbf{L}}{\mathbf{h}} = \frac{\mathbf{L}\mathbf{n}\mathbf{r}\mathbf{S}}{\mathbf{n}\mathbf{n}\mathbf{r}^{-1}}$ $\frac{\mathbf{h}}{\mathbf{h}} = \frac{\mathbf{P}\mathbf{n}\mathbf{r}\mathbf{s}}{\mathbf{P}\mathbf{n}\mathbf{k}\mathbf{s}} = \frac{\mathbf{C}\mathbf{n}\mathbf{n}\mathbf{s}}{\mathbf{n}\mathbf{n}\mathbf{s}^{-1}}$	\odot	::	٢
15 16	 Light energy emitted by an atom produces a spectrum that is made up of a series of lines at discrete (quantised) energy levels. this provides direct evidence for the existence of these energy levels. each element in sample produces characteristic absorption & emission spectra. These spectra can be used to identify and quantify the element. 	3	:	٢
17 18	 In absorption spectroscopy, electromagnetic radiation is directed at an atomised sample. radiation is absorbed as electrons are promoted to higher energy levels. an absorption spectrum is produced by measuring how the intensity of absorbed light varies with wavelength. 	$\overline{\mbox{\scriptsize (s)}}$:	0
19 20	 In emission spectroscopy, high temperature is used to excite the electrons within atoms. As the electrons drop to lower energy levels, photons are emitted. emission spectrum of a sample is produced by measuring the intensity of light emitted at different wavelengths. 	3	:	٢
21	In atomic spectroscopy, the concentration of an element within a sample is related to the intensity of light emitted or absorbed.	$\overline{\mbox{\scriptsize (s)}}$		\odot

	All Chamistry In angania Chamistry		Traf	ffic Li	ght
	AH Chemistry: Inorganic Chemistry		red	amber	green
22 23 24	 Discrete lines observed in atomic spectra can be explained if electrons, like photons, also display the properties of both particles and waves. electrons behave as standing (stationary) waves in an atom and these are waves that vibrate in time but do not move in space. different sizes and shapes of standing wave possible around the nucleus, known as orbitals. 	($\overline{\times}$:	٢
25	Orbitals can hold a maximum of two electrons.	($\overline{\mbox{\scriptsize (i)}}$	\bigcirc	\odot
	s •				
26	$\begin{array}{ c c c c c } \hline p \\ \text{orbital} \\ \hline z \\ 2p_x \\ \hline 2p_x \\ \hline 2p_y \\ \hline 2p_y \\ \hline 2p_z \\ 2p_z \\ \hline 2p_z \\ \hline 2p_z \\ 2p_z \\ \hline 2p_z \\ 2p_z$	(3		:
	d orbital d_{y} d_{xy} d_{yz} d_{yz} d_{yz} d_{yz} d_{zx} d_{zx} d_{x} d_{x} d_{x} d_{x}				
27	f orbital Not required to know f orbitals shapes for AH Chemistry.		\odot	\odot	\odot
27	Electrons within atoms have fixed amounts of energy called quanta. The principal quantum number (n) is the shell number of an energy level.		\odot	\bigcirc	\odot
28a	• the higher the value of n the larger the size of the s-orbital. $\frac{ \text{Electron Shell}}{ \text{Principal Quantum number}} = \frac{1^{\text{s}} \text{Shell}}{n=2} = \frac{3^{\text{s}} \text{Shell}}{n=3} = \frac{3^{\text{s}} \text{Shell}}{n=4} = \frac{5^{\text{s}} \text{Shell}}{n=5}$	(8		\odot
28b	The angular momentum quantum numbers (l) describes the type of subshell within an electron shell. • The values of l for each shell go from 0 up to n-1 Subshell Type s p d f Angular Momentum Number l=0 l=1 l=2 l=3	($\overline{\mbox{\scriptsize (s)}}$:	٢
	The magnetic quantum numbers (m _l) describes the orientation of the orbitals within a				
28c	subshell. • values of each orbital go from -l through 0 up to +l Subshell Values of Magnetic Quantum Number (m _l) s (l=0) 0 0 p (l=1) -1 0 +1 0 d (l=2) -2 -1 0 +1 +2 f (l=3) -3 -2 -1 0 +1 +2 +3	(3	:	٢
28d	The spin magnetic quantum number (m_s) determines the spin direction of an electron and has values $+\frac{1}{2}$ or $-\frac{1}{2}$.	(\odot	(:)	\odot
29a	The aufbau principle states that electron orbitals fill up in order of increasing energy: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6d, 7b, 7b, 7b, 7b, 7b, 7b, 7b, 7b, 7b, 7b		8	:	<u></u>
29b	Hund's rule states that electrons fill up orbitals singly first to maximise the number of parallel spins but filling each orbital with a second electron. e.g. iron atoms have 26 electrons and has an electronic configuration of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ 1^{st} five d-electrons fill up singly fit d electrons doubles up. 1^{st} d electrons doubles up.	(8	:	٢

29c	• t	auli exclusion principle states that two electrons in the same atom cannot have the same four quantum nun no orbital can hold more than two electrons.					tum number	s	<u>()</u>	:	(;)		
30		In isolated atoms, orbitals within each subshell are degenerate (equal in energy)							\odot	\odot	\odot		
31			e relative en						mmatically for	or	6	\odot	\odot
	the first four shells of a multi-electron atom using orbital box notation. Electron configuration of the first 36 elements using orbital box or spectroscopic notation					ion))					
	can be w					-							
	Element	Spectroscopi	ic Notation		Electronic		al Box Notation						
32	Scandium	1s² 2s² 2p ⁶ 3s²	² 3p ⁶ 3d ¹ 4s ²	t↓ ₂s	$\begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ {}_{2p} \end{array}$	↑↓ _{3s}	$\begin{array}{ c c c } \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\ _{3\rho} \end{array}$	1	3d	↓ 4s	3	:	\odot
	Vanadium	1s² 2s² 2p ⁶ 3s²	2 3p ⁶ 3d ³ 4s ² 1	↑↓ 2s	$\begin{array}{c c} \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ & 2p \end{array}$	↑↓ ^{3s}	$\begin{array}{ c c c } \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\ _{3\rho} \end{array}$	11	↑ 3d	4s))	
	Cobalt	1s² 2s² 2p ⁶ 3s²	² 3p ⁶ 3d ⁷ 4s ²	t↓ ₂s	$\begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ _{2p} \end{array}$	↑↓ _{3s}	$\begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\ _{3p} \end{array}$	↑↓ ↑↓	↑ ↑ ↑ 1 3d	t↓ 4s			
33	33 The periodic table is subdivided into four blocks (s, p, d and f) corresponding to the outer electronic configurations of the elements within these blocks. 33 s block p block f block					uter	<u>()</u>	:	0				
	Gro	ups 1→2	Groups 3→		Transition Me			s and La	nthanides.				
34 35 36	for the firs configura Elemen Lithium Berylliun Boron Carbor Carbor Nitroge Oxyger Fluoring Anomalies • th	st 36 eler tions and tions and tions and tions and m m n tions	and subsect ments is due this provide on Configurati $1s^2 2s^1$ $1s^2 2s^2$ $1s^2 2s^2 2p^1$ $1s^2 2s^2 2p^2$ $1s^2 2s^2 2p^2$ $1s^2 2s^2 2p^3$ $1s^2 2s^2 2p^4$ $1s^2 2s^2 2p^5$ ation energy to special stable the electronic stable the elect	ion 1s ion 1s ion 1s ion 1s ion 1s ion 1s ion 1s ion 4H ion 4H	e relative sta lence for the st lonisation E H = +526 kJ H = +905 kJ H = +807 kJ H = +1090 kJ st lonisation E I = +1090 kJ r I = +1320 kJ r I = +1690 kJ r are explained sociated with ic configurat	bility o ese ele nergy mol ⁻¹ mol ⁻¹ mol ⁻¹ mol ⁻¹ mol ⁻¹ mol ⁻¹ d by co h half- tion, th	f different su ctronic conf Removing au involves brea shell so requ an electron ↑↓ 1s Boron has 2 removes the behind the m ↑↓ 1s Nitrogen is ha filled 2p shell single electron ↑↓ 1s Oxygen is ea from as it crea from as it crea the nsidering elefilled and fu re higher the	ubshell iguratic n electron aking a re- uires mor- $\uparrow \downarrow$ 2s p^1 and re- entire $2p$ nore stab $\uparrow \downarrow$ 2s nore stab $\uparrow \downarrow$ 2s nore stab $\uparrow \downarrow$ 2s arder to s a relatified with particular 2s assier to re- eates a h $\uparrow \downarrow$ 2s ectronic II subshell	electronic ons. e.g. from Beryllium elatively stable e energy to ren 2p moving an elect o shell and leave le full $2p^2$ 1 remove an elect vely stable half rallel sins on th 1 1 2p remove an elect alf-filled 2p she 1 2p emove an elect alf-filled 2p she 2p c configuration hells tion energy.	n 2s ² nove ctron /es ttron - e ttron - e ns.	\odot	:	\odot
37 38	molecule: The numb	s and pol		S. SU rrOUI Number o		tral ato numl	-	ited by:	-		3	(i)	٢
39 40	• e • b	lectron p oth lone <u>airs arou</u> on pairs e — F	negatively c airs are arra pairs and bo ind the centr 3 electron parts 3 electron parts Trigonal Pla	inged to onding al ator airs	to minimise i pairs take p	repulsion of the second	ion and max	airs		rs	3	9	0

	All Chamistony, Increasing Chamistony	Tra	affic L	ight
	AH Chemistry: Inorganic Chemistry JAB Section 1c: Transition Metals	red	amber	green
44	Metals with an incomplete d subshell in at least one of their ions are called d-block transition metals	8		\odot
45	The aufbau principle states that orbitals of the lowest energy fill up first with electrons 1s * 2s * 2p * State 3p * 3d * 4f * 4f * 4f * 4f * Iowest energy fill up first with electrons 5s * 5p * 5d * 5f * 6d * Exceptions to aufbau rule include: Electronic Configuration according to aufbau principle Actual Electronic configuration Reason Chromium 1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁴ 4s² 1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁵ 4s1 Half-filled 3d ⁵ preferred to full 4s²	0	٢	O
	Copper 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ 4s ² 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ Full 3d ¹⁰ preferred to full 4s ²			
46	Electrons are lost from the outer electrons shell first, regardless of the order they fill up in according to the aufbau principle. In transition metals, 4s electrons are removed before 3d electrons when metal ions are formed.	8		:
47 48	 An element is in a particular oxidation state when it has a specific oxidation number. oxidation number in a free or uncombined element in zero for single atoms ions, the oxidation number is the same as the charge on the ion hydrogen usually has a oxidation number of +1 (except in hydrides) oxygen usually has an oxidation number of -2 (except in peroxides) The algebraic sum of all the oxidation numbers in a molecule must be zero e.g. In SO₃, three O atoms give 3x oxidation state of +6. The algebraic sum of all the oxidation numbers in a polyatomic ion must be equal to the charge on the ion e.g. In SO₄², four O atoms give 4x oxidation state of -2 and combine to equal -8 therefore the sulphur must have the oxidation state of +6 to allow the overall charge to equal -2. 	8		\odot
49 50	Transition metals can have different oxidation states in its compounds. • compounds of the same transition metal in different oxidation states may have different colours e.g. Ion VO ₃ ⁻ VO ²⁺ V ³⁺ V ²⁺ Oxidation Sate of Vanadium +5 +4 +3 +2 Colour Yellow Blue Green Violet	8		0
51	Oxidation occurs when the oxidation number of a species increases	8	\odot	\odot
52 53	Reduction occurs when the oxidation number of a species decreases Compounds containing metals in high oxidation states are often oxidising agents. • Oxidising agents are reduced themselves which reduces the oxidation number Compounds with metals in low oxidation states are often reducing agents. • Reducing agents are oxidised themselves which increases the oxidation number	8		: :
54 55	A ligand is defined as a molecule or ion electron donor which bonds to the metal ion by the donation of one or more electron pairs to unfilled metal ion orbitals. Type of Ligand Monodentate Bidentate Hexadentate Neutral Ligands Charged Ligands Water OH2 Chloride Cl' Ammonia NH3 Cyanide CN Lexample Nitrite NO2' Hydroxide OH' Hydroxide OH'	8		0
57	 The total number of bonds of the ligand(s) to the central transition metal ion is called the co-ordination number EDTA has a co-ordination number of 6 hexaaquacopper(II) [Cu(OH₂)₆]²⁺ has a co-ordination number of 6 as the central Cu²⁺ ion is surrounded by 6 water molecules tetrachloridocuprate(II) [CuCl₄]²⁻ has a co-ordination number of 4 as the central Cu²⁺ ion is surrounded by 4 negative chloride ions 	0	:	0

	Naming of Compl	exes from Formu	ıla					
Ligands listed alphabetically followed by the name of the central metal ion								
		nds follow the following						
	Neutral Ligand Water	Naming	Charged Ligands de ending ligand e.g. cl					
	Ammonia		ate ending ligand e.g. o					
	Carbon monoxide	carbonyl	-ite ending ligand e.g. r					
			re used for multiple liga					
			on, the suffix <i>–ate</i> is ad					
	 nickel bec 	omes nickelate(II)						
	 iron becor 							
56	 copper be 		not copperate]			\frown		
58			n, the metal does not h written after the meta			$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
	 The oxidation brackets) 	State of the metal is						
		Co[NH ₃) ₆] ²⁺ is hexa	amminecobalt(II)					
		$e(O_4C_2)_3)_6]^{3-}$ is trioxa						
	Writing Formula f	rom Names of Co	omplexes					
	•	plex ions are written						
	 metal symbol of 							
			spective of being charge	ed or neutral				
			f electrons written first e					
			en after square brackets	6				
		nloridocuprate(II) is w						
		quacopper(II) is writte	tals are no longer dege	noroto (aqual in anarqu)				
	-		wer energies occurs wh					
59			e the electrons in the o			\bigcirc		
60	axes to be repe					\odot	\bigcirc	\odot
01	weak field and strong field ligands affect energy differences between subsets of d							
	orbitals.							
62	Ligands can be placed in a spectrochemical series based on their ability to split d orbitals.					$\overline{\mbox{\scriptsize ($)}}$	\odot	\odot
02	l⁻ < Br⁻	`< Cl⁻< ⊦⁻	< H ₂ O $<$ NH	3 < CN⁻		U	0	9
		•	n be explained in terms					
	 dx²-y² and dz² orbitals are raised to a higher energy level due to electrostatic 							
	repulsion from the ligands in the complex							
	 transition metals can absorb light because photons (at a particular wavelength) excite electrons in the lower d-orbitals (ground state) up to a higher energy d- 							
63	orbital (excited			a higher energy a				
64	•		n of energy $\downarrow_{d_{x^2 \to z}} \uparrow_{d_z}$	ŧ		$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
65	d _{x2} -		>					_
	†	ti ti dan dan		_				
	- ×y	-x2 -y2	the complementary col	-).				
			levels when energy co					
			ectromagnetic spectrun					
	Transition metals can a	act as catalysts as the	ey can form a variable n					
66	to the availability of un							
67		ier formation of interm				$\overline{\mbox{\scriptsize (i)}}$	\bigcirc	\odot
68	•	on pathways of lower	.	factor		Ŭ))
			tion metals is important idation state once the r					
69a	Homogeneous catalyst					$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
034			state as the reactants.			U	Θ	9
			e adsorption of reactant	t molecules				
		o catalycle work by th						
001								
69b 70	Ĭ.	8		–		$\overline{\mbox{\scriptsize (i)}}$	\bigcirc	\odot
10		(Hilling)				-	_	
			Catalyst					
1	Reactant molecule collides with catalyst	Reactant molecule adsorbs to catalyst	Activated Complex forms	Product molecule(s) desorbs from catalyst				

				Tra	ffic L	ight
		ection 2a: Chemical Equilibrium	JAB chem	red	amber	green
 71 72	A chemical reaction remains constant in	n is in equilibrium when the composition of the reactants andefinitely.		8		
	equilibrium For the	constant (K) characterises the equilibrium composition of the rea	action mixture			
	general reaction:	aA + bB ╤╤े cC + dD				
73	The equilibrium expression is:	$K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$		8	:	\odot
	where:	[A], [B], [C] & [D] are the equilibrium concentrations of A, a, b, c & d are the stoichiometric coefficients in the balance				
		rium constant can be calculated: rium constant has no units.	i			
		gen and 1.5mol of hydrogen react by the Haber Process in ve ammonia with an equilibrium concentration of 0.4mol.	n a one litre			
74	Equation:	N_2 + $3H_2$ \implies 2	2NH ₃			
74 76	Mole ratio	1 mol 3mol 0.2mol 0.6mol	2mol 0.4mol	\otimes		\odot
	(Reactants Left) (0					
		litre volume, the number of moles is equal to concentration $[NH_3]^2$ $[0.4]^2$	on in mol l ⁻¹			
	K	$= \frac{[NH_3]^2}{[N_2] \ [H_2]^3} = \frac{[0.4]^2}{[0.6] \ x \ [0.9]^3} = 0.366$				
75		quilibrium constant K indicates the position of equilibrium. n value of K (well above 1) indicated equilibrium far to the	RIGHT	8	\odot	\odot
10	A very low	value of K (well below 1) indicated equilibrium far to the L	EFT		\cup	•
77	given a value of 1 i	oure solids and pure liquids at equilibrium are taken as con n the equilibrium expression.		$\overline{\mbox{$\odot$}}$	\bigcirc	\odot
78		Ie of the equilibrium constant depends on the reaction terr t of concentration and/or pressure.	perature	$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
79	For endothermic re • a rise in temperate • yield of the produce	ure causes an increase in <i>K</i> • a rise in temperature causes a de	crease in <i>K</i>	$\overline{\odot}$		\odot
80	The presence of a	catalyst does not affect the value of the equilibrium consta	ant.	$\overline{\mathbf{i}}$	\bigcirc	\odot
81	hydroxide ions. Thi	bus solutions, water molecules form an equilibrium with hy is ionisation of water can be represented by:		3	:	0
	water molecule	water molecule hydronium ion h	DH ⁻ (aq) hydroxide ion			
82	represented by the	the formula $H_3O^{+}{}_{(aq)}$ and is a hydrated proton and is often shorthand $H^{+}{}_{(aq)}$	1	$\overline{\mathfrak{S}}$	\bigcirc	\odot
83		as amphoteric as it can act as an acid or a base.		$\overline{\mathfrak{S}}$	\bigcirc	\odot
84	The dissociation co	Substant K _w for the ionisation of water is known as the ionic $K_w = [H_3O^+][OH^-]$	product:		\odot	\odot
85		varies with temperature oximately 1 x 10 ⁻¹⁴ at 25°C.		\otimes		\odot
	The relationship be	etween pH and the hydronium H_3O^+ ion concentration is given by	ven by:			<u> </u>
86		$H = -\log_{10}[H_3O^+] \qquad [H_3O^+] = 10^{-pH}$		8		\odot
87	OH (aq) are both eq	bus solutions with a pH value of 7, the concentrations of H ual to 10^{-7} mol l ⁻¹ at 25°C.		$\overline{\times}$		\odot
	be calculated using	to of $H_3O^+(aq)$ or $OH^-(aq)$ is known, the concentration of the or the ionic product K_w (or by using pH + pOH = 14.)				
	-	OH ⁻] if [H ₃ O ⁺] = 0.025mol l ⁻¹ OH ⁻ 1 = $\frac{K_w}{K_w} = \frac{1 \times 10^{-14}}{1 \times 10^{-14}} = 4 \times 10^{-13} \text{ mol } l^{-1}$		\otimes	\bigcirc	\odot
	l	$OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]} = \frac{1 \times 10^{-14}}{0.025} = 4 \times 10^{-13} \text{ mol } l^{-1}$				

	The Brønsted-Lowry definition of acids and bases are:				
	Acid Loses a proton (H ⁺) to form the conjugate base				
	Base Gains a proton (H ⁺) to form the conjugate acid				
89	Conjugate Acid Formed when the base gains a proton (H ⁺)		_	-	-
90	Conjugate Base Formed when the acid loses a proton (H ⁺)	($\overline{\mathbf{S}}$	\odot	\odot
91	For example:				
	$CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$				
	acid base conjugate base conjugate acid				
	Strong acids fully dissociate into their ions				
92	e.g. $HCI(g) + H_2O(l) \longrightarrow H_3O^+(aq) + CI^-(aq)$	($\overline{\mathbf{i}}$	\bigcirc	\odot
	Weak acids partially dissociate into their ions		\smile))
	e.g. $CH_3COOH(l) + H_2O(l) = CH_3COO^-(aq) + H_3O^+(aq)$				
	Examples of strong and weak acids & alkalis include:				
93	Strong Acid Weak Acid Strong Base Weak Base hydrochloric acid ethanoic acid Sodium hydroxide Ammonia solution	($\overline{\mathbf{S}}$	\bigcirc	\odot
94	sulphuric Acid carbonic acid Potassium hydroxide		\smile	$\mathbf{)}$	0
	nitric Acid sulphurous acid Lithium hydroxide				
	Carboxylic acids (and other weak acids) partially dissociate into ions, staying mainly as molecules.				
	Weak Acid Equilibrium Equation			-	•
95	Ethanoic acid $CH_3COOH_{(l)} + H_2O_{(l)} - CH_3COO^-(aq) + H_3O^+(aq)$	(\odot	\odot	\odot
	Sulphur Dioxide solution $SO_{2(g)} + 2H_2O(l) = 2H_3O^+(aq) + SO_4^{2^-}(aq)$				
	Carbon Dioxide solution $CO_{2(g)} + 2H_2O(l) = 2H_3O^+(aq) + CO_3^{2^-}(aq)$				
	Ammonia, and amines, only partially dissociate into ions and mainly stays as molecules				
	Weak Base Equilibrium Equation		\odot	\odot	\bigcirc
96	Ammonia solution $NH_{3(aq)} + H_2O(l) = NH_{4^+(aq)} + OH^{-}(aq)$	(\odot	\odot	\odot
	1-aminomethane solution $CH_3NH_{2(aq)} + H_2O(l) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$				
	Equimolar solutions of weak and strong acids/bases have the following properties:				
07	Property Strong Acid Weak Acid Property Strong Base Weak Base		\bigcirc	\odot	\odot
97	pH Value lower Higher (Nearer pH=7) pH Value higher Lower (nearer pH=7) Conductivity Higher Lower Conductivity Higher Lower	(\odot	\bigcirc	\odot
	Conductivity Higher Lower Conductivity Higher Lower				
	The acid dissociation constant or the equation $HA + H_2O = H_3O^+ + A^-$ is:				
98		($\overline{\mathbf{S}}$	\odot	\odot
30	$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \qquad \therefore pK_{a} = -\log_{10}K_{a}$		U	0	0
	NB AS H_2O is both a reactant and the solvent, [H_2O] is given the value = 1 and cancels out of equation.				
	The approximate pH of a weak acid $pH = \frac{1}{2}pK_a - \frac{1}{2}log_{10}C$				
	can be calculated using.				
	e.g. calculate the pH of 0.25mol l^{-1} solution of ethanoic acid (pK _a = 4.76)				
99	$pH = \frac{1}{2}pK_a - \frac{1}{2}log_{10}c$	($\overline{\mathbb{S}}$	\bigcirc	\odot
	$pH = \frac{1}{2}x4.76 - \frac{1}{2}x \log_{10}(0.25)$		\smile))
	$pH = 2.38 - \frac{1}{2}x (-0.60)$ pH = 2.38 - (-0.30)				
	pH = 2.68				
	Acid Type Base Type pH of solution of Soluble Salt formed				
100	Strong Acid Strong Base Neutral solution	($\overline{\mathbf{S}}$	\bigcirc	\odot
	Weak Acid Strong Base Alkaline solution Strong Acid Weak Base Acidio Solution		Ū	•	•
	Strong Acid Weak Base Acidic Solution				
101	The response of a site are warked out from the individual eside and becase wood.				
	The names of salts are worked out from the individual acids and bases used:			~	~
101	Acid Used Base Used Name of Salt Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride ethanoic acid magnesium hydroxide magnesium ethanoate	(3	\bigcirc	\odot
101	Acid Used Base Used Name of Salt Acid Used Base Used Name of Salt	(3	:	0
101	Acid Used Base Used Name of Salt Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride ethanoic acid magnesium hydroxide magnesium ethanoate sulphuric acid Potassium hydroxide potassium sulphate sulphurous acid calcium hydroxide calcium sulphite	(8		٢
101	Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide lithium nitrate	(8		0
101	Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide lithium nitrate Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solution has pH greater than 7 Sodium ethanoate solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving.	(3		\odot
	Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide potassium sulphate sulphurics acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide lithium nitrate Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solid fully dissociates into ions on dissolving. Ethanoate ions collide with H ₃ O ⁺ (aq) Ethanoate ions collide with H ₃ O ⁺ (aq) CH ₃ COO(aq) H ₃ O ⁺ (aq) H ₃ O ⁺ (aq) CH ⁺ ₃ COO(aq)		_	_	
101	Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide potassium sulphate nitric acid lithium hydroxide potassium sulphate sulphuric acid lithium hydroxide potassium sulphate nitric acid lithium hydroxide lithium nitrate Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solution has pH greater than 7 Sodium ethanoate solid fully dissociates into ions on dissolving. Ethanoate ions collide with H ₃ O ⁺ ions to form molecules of ethanoic acid: CH ₃ COO ⁻ (ac) + H ₃ O ⁺ (aq) H ₃ O ⁺ (aq) - CH ₃ COOH ₄ (aq) H ₃ O ⁺ (aq) - CH ₃ COOH ₄ (aq) H ₃ O ⁺ (aq) - CH ₃ COOH ₄ (aq) H ₃ O ⁺ (aq) - CH ₃ COOH ₄ (aq) H ₃ O ⁺ (aq) - CH ₃ COO ₅ (ar) H ₃ O ⁺ (aq) - CH ₃ COO ₄ (ar) H ₃ O ⁺ (aq) - CH ₃ COO ₅ (ar)		©	□□	00
	Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide potassium sulphate nitric acid lithium hydroxide potassium sulphate Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving. Ethanoate ion sculide with H ₃ O ⁺ (aq) CH ₃ COO(aq) + H ₃ O ⁺ (aq) MH ₃ (aq) + H ₂ O(q) H ₃ O ⁺ (aq) ions removed from solution as they join up with CH ₃ COO(aq) in up with CH		_	_	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	_	
	Acid Used Base Used Name of Salt hydrochloric acid sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate nitric acid lithium hydroxide lithium nitrate Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solid fully dissociates into ions on dissolving. Ethanoate ions collide with H ₃ O ⁺ (aq) CH ₃ COO ⁺ (aq) H ₃ O ⁺ (aq) H ₃ O ⁺ (aq) H ₃ O ⁺ (aq) Momonium chloride solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving. Ammonium ions collide with H ₃ O ⁺ (aq) CH ₃ COO(_{aq}) H ₃ O ⁺ (aq) M ₃ O ⁺ (aq) H ₃ O ⁺ (aq) <		_	_	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	:	0
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	_	

	I can describe what an acidic and a basic buffer consists of.			
104	TypeDescriptionExampleAcidsalt of weak acidsodium ethanoateBufferdissolved in a weak aciddissolved in ethanoic acidBasicsalt of weak baseammonium chlorideBufferdissolved in a weak basedissolved in ammonia solution	ŝ	:	٢
105	Acidic buffers and basic buffers work by the following mechanism: Acid Buffer e.g. sodium ethanoate dissolved in ethanoic acid solution. large concentration from weak acid CH ₃ COOH _(ac) + H ₂ O _(i) \longrightarrow CH ₃ COO ⁻ _(ac) + H ₃ O ⁺ _(ac) water concentration trom dissolved salt CH ₃ COOH _(ac) + H ₂ O _(i) \longrightarrow CH ₃ COO ⁻ _(ac) + H ₃ O ⁺ _(ac) bydronium ion When acid is added to buffer: Equilibrium shifts to LEFT as added H ₃ O ⁺ _(ac) in added acid join the alkali is added to buffer: Equilibrium shifts to RIGHT as H ₃ O ⁺ _(ac) ions are neutralised by the alkali and ethanoic acid molecules dissociate into ions to replace H ₃ O ⁺ _(ac) ions. Acid Buffer e.g. ammonium chloride dissolved in ammonia solution. large concentration from weak acid NH ₃ (ac) NH ₃ (ac) NH ₄ ⁺ (ac) Men acid is added to buffer: Equilibrium shifts to RIGHT as H ₃ O ⁺ _(ac) ions are neutralised by the aklai and ethanoic acid molecules dissociate into ions to replace H ₃ O ⁺ _(ac) ions. When alkali is added to buffer: Equilibrium shifts to LEFT as added alkali join up with ammonium NH ₄ ⁺ ions and form ammonia molecules.	3		٢
106	The approximate pH of a buffer solution is calculated using: e.g. Calculate the pH of a buffer where 3.74g of sodium ethanoate (CH ₃ COONa) is dissolved 0.20mol l ⁻¹ ethanoic acid and the final volume of the buffer is 100cm ³ . gfm CH ₃ COONa = (2x12)+(3x1)+(2x16)+(1x23) = 24+3+32+23 = 82g mol ⁻¹ no. of mol = $\frac{mass}{gfm} = \frac{3.74}{82} = 0.0456 \text{ mol}$ concentration $\frac{no. of mol}{volume} = \frac{0.0456 \text{ mol}}{0.1 \text{ litres}} = 0.456 \text{ mol} \text{ l}^{-1}$ pH = pK _a - log ₁₀ $\frac{[acid]}{[salt]} = 4.76 - log_{10} \frac{0.2}{0.456} = 4.76 - log_{10}(0.439)$ = $4.76 - (-0.358)$ = 5.12	8		0
107	Indicators are weak acids in which the dissociation can be represented as: $HIn(aq) + H_2O(l) = H_3O^+(aq) + In^-(aq)$	$\overline{\mathbf{O}}$	☺	\odot
108	The dissociation constant K _{In} for an acid indicator is: $K_{In} = \frac{[H_3O^+][In^-]}{[HIn]}$	$\overline{\mathbf{o}}$:	:
109 110 111 112 113	 The colour of an acid indicator is distinctly different from that of its conjugate base. the colour of an indicator is determined by the ratio of [HIn] to [In⁻] the theoretical point at which colour changes is when [H₃O⁺] = K_{In} the colour change is assumed to be distinguished when [HIn] and [In⁻] differ by a factor of 10 the pH range over which a colour change occurs can be estimated by the expression: pH = pK_a ±1 	8	٢	:
114	Suitable indicators can be selected from pH data or titration curves. Which of the following indicators should be used in the titration of aqueous potassium hydroxide solution with aqueous ethanoic acid A. Phenolphthalein (pH range 8.3-10.0) B. Bromothymol blue (pH range 6.0-7.6) C. Methyl Red (pH range 4.2-6.3) D. Methyl Orange (pH range 3.1-4.4) Answer: Potassium hydroxide reacting with ethanoic acid will produce a salt solution with a pH in the alkaline region of the pH scale. Phenolphthalein is the only listed indicator where the colour change pH range is entirely in the alkaline region of the pH scale. Mathematical control of the pH scale. Methyl Red is the only list indicator which is close to this pH range. Methyl Red is the only list indicator which is close to this pH range.	8	٢	٢

			Tra	ffic L	ight			
	AH Chemistry: Physical Chemistry JAB Section 2b: Reaction Feasibility		red	amber	green			
				a	8			
115	The standard enthalpy of formation, ΔH°_{f} is defined as the enthalpy change for the formation of one mole of a substance from its elements in their natural state.		$\overline{\mbox{\scriptsize ($)}}$		\odot			
116	e.g. Enthalpy of combustion of ethanol: $2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(l)}$ Standard state of a substance is its most stable state at a pressure of 1 atmosphere and	+	3		\odot			
	a specified temperature (usually 298K). I can calculate the standard enthalpy change of a reaction using:		\sim	\smile	0			
	$\Delta H^{\circ} = \sum \Delta H^{\circ}_{f}$ (products) - $\sum \Delta H^{\circ}_{f}$ (reactants)							
	e.g. calculate ΔH° for the following reaction: $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$							
117	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\odot	\odot	\odot			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	$\frac{ZnO(s)}{ZnO(s)} - \frac{-350}{-350} = -1294 - (-412)$							
	$2SO_{2(g)}$ -297 = -882 kJ mol ⁻¹							
	Entropy (S) is a measure of the degree of disorder of a system							
118	• the greater the degree of disorder, the greater the entropy							
119	 solids have lower values of entropy than gases. 							
120	 there is a lorge change in antrony at a substance's molting and bailing point 							
121	 no change in temperature as state changes but large increase in entropy/disorder as solids turn into liquids or liquids turn into gas 							
122	Second law of thermodynamics states that the total entropy of a reaction system and its		$\overline{\mathbf{S}}$	\odot	\odot			
	surroundings always increases for a spontaneous process.		\bigcirc	\bigcirc	•			
123	When heat is released by a reaction system to the surroundings there is an increase in the entropy (disorder) of the surroundings.		\sim	\sim				
124	 when heat is absorbed by a reaction system to the surroundings there is a 		$\overline{\mbox{\scriptsize ($)}}$	\odot	\odot			
	decrease in the entropy (disorder) of the surroundings.							
125	Third law of thermodynamics states that the entropy of a perfect crystal at 0 K is zero. The standard entropy of a substance is the entropy content of one mole of a substance at		$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot			
126	1atm pressure and 298K		$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot			
	I can calculate the change in standard enthalpy of a reaction using:							
	$\Delta S^{\circ} = \sum \Delta S^{\circ}$ (products) - $\sum \Delta S^{\circ}$ (reactants)							
	e.g. calculate ΔS° for the following reaction: $2ZnS(s) + 3O_{2(g)} \rightarrow 2ZnO(s) + 2SO_{2(g)}$							
127	Substance $\Delta S^{\circ} (J K^{-1} \text{ mol}^{-1})$ $\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma \Delta H^{\circ}_{f} (\text{reactants})$		$\overline{\mathbf{S}}$	\odot	\odot			
121	= (2x44) + (2x248) - (2x-206) + (3x0)		\bigcirc	\cup	•			
	$O_{2(g)}$ 205 - 584 (412)							
	$\begin{array}{ c c c c c c c c }\hline ZnO_{(s)} & 44 & = & 564 & - & (-412) \\ \hline 2SO_{2(g)} & 248 & = & -147 \text{ J K}^{-1} \text{ mol}^{-1} \end{array}$							
	I know that the change in free energy for a reaction is related to the enthalpy and entropy							
	changes by:							
	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
	Free Energy = Enthalpy Change – Temperature x Entropy Change							
128	$(kJ mol^{-1})$ $(kJ mol^{-1})$ (K) $(kJ K^{-1} mol^{-1})$		$\overline{\mathbf{S}}$	\odot	\odot			
	e.g. calculate ΔG° for the following reaction: $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$ at 7000K $\Delta G^{\circ} = \Delta H^{\circ} - T x \Delta S^{\circ}$		\bigcirc	\smile	0			
	$\Delta G^{\circ} = -882 - 7000 \text{ x}^{-147/1000}$							
	$\Delta G^{\circ} = -882 - 5000 \times -0.147$							
	$\Delta G^{\circ} = -882 - (-735)$							
	$\Delta G^{\circ} = -147 \text{ kJ mol}^{-1}$ Please note: entropy values of ΔS° are usually given in J K ⁻¹ mol ⁻¹ so must be divided by 1000 to get them into kJ K ⁻¹ mol ⁻¹ when using this equation.							
129	When the change in free energy (ΔG°) between reactants and products is negative , a reaction may occur and the reaction is said to be feasible .		$\overline{\mbox{\scriptsize (s)}}$	\odot	(;)			
130	A feasible reaction is one that tends towards the products rather than the reactants. This	<u> </u>	$\overline{\mbox{\scriptsize ($)}}$		\odot			
100	does not give any indication of the rate of the reaction.	<u> </u>			9			
131	The standard free energy change for a reaction can be calculated using: $\Delta G^{\circ} = \sum \Delta G^{\circ}$ (producto) $\sum \Delta G^{\circ}$ (producto)		$\overline{\mathbf{S}}$	\odot	\odot			
1	$\Delta G^{\circ} = \sum \Delta G^{\circ}$ (products) - $\sum \Delta G^{\circ}$ (reactants)			1				

100		he feasibility of a chemical reaction under standard conditions can be predicted from alculated value of the change in standard free energy (ΔG°).				
132 135	When $\Delta G^{\circ} < 0$ Reaction is feasible	When $\Delta G^{o} = 0$ Reaction is just feasible	When $\Delta G^{0.1234567} > 0$ Reaction is not feasible	\otimes		\odot
		(reaction is in equilibrium)				
	I can estimate the temperatures at which a reaction may be feasible by considering the range of values of <i>T</i> for which $\Delta G^{\circ} < 0$. e.g. calculate the temperature when the reaction becomes feasible: $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-882 \times 1000 \text{ J mol}^{-1}}{-147 \text{ J K}^{-1} \text{ mol}^{-1}} = 6000 \text{ K}$			0	:	٢
134	Any reaction is feasible if ΔG is negative, even under non-standard conditions			$\overline{\mathbf{i}}$	\odot	\odot
136	A reversible reaction will proceed spontaneously until the composition is reached where $\Delta G = 0$.			$\overline{\otimes}$		\odot

	All Chamistry, Dhysical Chamistry	Т	raffic	Light
	AH Chemistry: Physical Chemistry	70	amhar	green
137	Chemical reactions normally depend on the concentration of reactants	Ċ	3 6	
138 139	The order of reaction with respect to each reactant can be determined by changing the concentration of each reactant individually. • The order of reaction relates each reacting species to the rate of reaction. For the reaction: A + B + C → D • Each reactant is varied one at a time and the reaction rate is measured:	E		
140 141 142	The rate equation for a reaction can be written using the individual orders for each reactant. Rate = k [A] ¹ x [B] ⁰ x [C] ² Rate = k [A] x 1 x [C] ² Rate = k [A] x 2 C] ² The overall rate of a reaction can be determined from the rate equation.	E		
143	Overall Order = $1 + 0 + 2 = 3$	6	9 6	
144	The order of a reaction can only be determined form experimental data.	6	36	
145	Using the rate equation and data of initial rate in the results table, the value of the rate constant and units of the rate constant can be calculated. • reactants can be zero, first, second or third order Rate = k [A] x [C] ² 2.0 mol l ⁻¹ s ⁻¹ = k [1.0mol l ⁻¹] x [1.0mol l ⁻¹] ² k = $\frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol } l^{-1} \text{ s}^{-1}}$ k = $\frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol}^3 l^{-3}}$ k = $2.0 l^2 \text{ mol}^{-2} \text{ s}^{-1}$	E	3 6) (3)
	Reactions usually occur by a series of steps called a reaction mechanism. The rate of	E	36	
147	the reaction is dependent on the slowest step called the rate determining step. Reaction mechanisms can be worked out from experimentally determined rate equations For reaction: CH ₃ CH ₂ Br + OH ⁻ \rightarrow CH ₃ CH ₂ OH + Br ⁻ Experiments show reactants have order [OH ⁻] ¹ and [CH ₃ CH ₂ Br] ¹ HO ⁻ + H_{CH_3} (slow) + HO ⁻ H_{CH_3} (fast) + H_{CH_3} + H_{CH_3} Both reactants are first order so one molecule of each takes part in the slow reactants have order [OH ⁻] ⁰ and [CH ₃ C(CH ₃) ₂ Br] ¹ For the reaction: CH ₃ C(CH ₃) ₂ Br + OH ⁻ \rightarrow CH ₃ C(CH ₃) ₂ OH + Br ⁻ Experiments show reactants have order [OH ⁻] ⁰ and [CH ₃ C(CH ₃) ₂ Br] ¹ H ₃ C (slow) + $H_{3}C$ (fast) + $H_{3}C$	E		

				Traffic Lig		
	AH Chemistry: Organic Chemistry	JAB chem		red	amber	green (
	Section 3a: Molecular Orbitals	chem		Le	am	816
149 150	I know that VSEPR cannot explain the bonding in all compounds and that mo theory can provide an explanation for more complex molecules. I know that molecular orbits form when atomic orbitals combine and the numb molecular orbitals formed is equal to the number of atomic orbitals that comb	per of ine.		\odot		٢
151 152	I know that the combination of two atomic orbitals results in the formation of a molecular orbital and an antibonding orbital. I know that the bonding molecular orbital encompasses both nuclei.			$\overline{\mathbf{O}}$	٢	0
153 154	I know that the attraction of the positively charged nuclei and the negatively c electrons in the bonding molecular orbital is the basis of bonding between ato I know that each molecular orbital can hold a maximum of two electrons.			$\overline{\mathbf{o}}$		\odot
155 156 157	I know that in a non-polar covalent bond, the bonding molecular orbital is sym about the midpoint between two atoms. I know that polar covalent bonds result from bonding molecular orbitals that a asymmetric about the midpoint between two atoms. I know that the atom with the greater value for electronegativity has the great the bonding electrons.	re		\odot		\odot
158	I know that ionic compounds are an extreme case of asymmetry, with the bor molecular orbitals being almost entirely located around just one atom, resultir formation of ions.			(i)		0
159	l can describe sigma (σ) molecular orbitals or sigma bonds.			\odot	\bigcirc	\odot
160	l can describe pi (π) molecular orbitals or pi bonds.			0:)	\bigcirc	\odot
161	I know that the electronic configuration of an isolated carbon atom cannot exp number of bonds formed by carbon atoms in molecules and that the bonding of molecules of carbon can be explained by hybridisation.			\odot		\odot
	2b I can describe sp ³ hybridisation.				\odot	(;)
162a 164 165	I can describe sp^2 hybridisation. I know that bonding in alkenes can be described in terms of sp^2 hybridisation.			\odot		٢
166	I know that bonding in alkynes can be described in terms of sp hybridisation.			\odot	\odot	\odot
167	I can describe the bonding in alkanes, alkenes, aromatics and alkynes in tern (σ) and pi bonds (π).	ns of sigma		\odot	\odot	\odot
	I know that molecular orbital theory can be used to explain why organic molecolourless or coloured. I know that electrons fill bonding molecular orbitals, leaving higher energy and orbitals unfilled.			::	:	0
	I know that the highest bonding molecular orbital containing electrons is calle highest occupied molecular orbital (HOMO) and the lowest antibonding molec is called the lowest unoccupied molecular orbital (LUMO).			\odot		٢
171	I know that absorption of electromagnetic energy can cause electrons to be p from HOMO to LUMO. I can explain why most organic molecules are colourless in terms of the energe difference between the HOMO and LUMO.			3		0
173	I know that a chromophore is a group of atoms within a molecule that is responsible absorption of light in the visible region of the spectrum.	onsible for		$\overline{\mathbf{O}}$		\odot
173 174 175	I know that a chromophore is a group of atoms within a molecule that is responsible absorption of light in the visible region of the spectrum. I know that chromophores exist in molecules with a conjugated system and the conjugated system is a system of adjacent unhybridised p orbitals that overla form a molecular orbital across a number of carbon atoms where electrons and delocalised.	nat a p side-on to ^r e		\odot		\odot
176	I can explain the colours of compounds in terms of energy gap between the H LUMO, and the wavelength of light absorbed.	IOMO and		\odot	\bigcirc	\odot

				No. o			Tra	ffic L	ight
	AH Che	-	•	Chemistry	JAB		red	amber	green
	In organic reactions		Bb: Synthesis	are broken and bo				a	60
177 178	molecules are form	ed.					$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
	 the process Homolytic fission has 		g is known as bor nd splitting with or		to either end of	the			
	bond to form free ra	adicals (each with	a unpaired elect	ron)					
179 182a	 TISN-NOOK ST 	tyle arrow repres	ents the moveme	nt of one electron f	rom the bond		$\overline{\mathbf{S}}$	\odot	\odot
1028		н—;́−сі	—→ H' +	Cl					
	Heterolytic fission h bond to form a positi			oth electrons going	g to one end of t	he			
400				of electrons in a be	ond				
180 182b				н + Br	-		$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
	н	I - C - Br	→ F	' Βι' - <i>C</i> ⊕					
		Н		H					
	Reactions involving involving homolytic	•	n tend to result in	far fewer products	than reactions				
181 183	 heterolytic f 	fission is better s	-	synthesis as a resu			$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot
		s involving hetero s or electrophiles		attacking groups a	are classified as				
	Nucleophiles are at	tracted towards a	atoms bearing a p		-				
184 185	 nucleophile bond. 	s that are capab	le of donating an	electron pair can fo	orm a new coval	ent	$\overline{\mathbf{S}}$	\odot	\odot
186	OH-	CN⁻	NH ₃	O in H ₂ O	R⁻				•
	Electrophiles are at	Negatively charged ions		Negatively polarised centres artial (δ -) or full ne	carbanion gative charge.				
187	electrophiles that are capable of accepting an electron pair can form a new								
			le of accepting an	electron pair can	form a new		\odot	\odot	\odot
187 188 189	covalent bo	ond.	le of accepting an	H in H ₂ O			$\overline{\ensuremath{\mathfrak{S}}}$	☺	\odot
188	covalent bo	SO ₃		H in H ₂ O Positively polarised centres	R ⁺		8		\odot
188	covalent bo H ₃ O ⁺ Positively charged ions There are different of	ond. SO ₃ chemical reaction	n types shown in t	H in H ₂ O Positively polarised centres the following a che	R+ carbocation mical equations	-	8		0
188	covalent bo H ₃ O ⁺ Positively charged ions There are different of a) substitution	ond. SO ₃ chemical reaction on: reaction with o	n types shown in t	H in H ₂ O Positively polarised centres the following a che eplacing another at	R+ carbocation mical equations tom/group		8		0
188	covalent bo H ₃ O ⁺ Positively charged ions There are different of a) substitution CH4	sond. SO ₃ chemical reaction on: reaction with + Cl ₂	n types shown in to one atom/group re	H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl +	R+ <u>carbocation</u> mical equations tom/group HCI		3		\odot
188	covalent bo H ₃ O ⁺ Positively charged ions There are different of a) substitutio CH4 b) addition: m	nd. SO3 chemical reaction on: reaction with of + Cl ₂ nolecule adding a	n types shown in to one atom/group re	$\frac{H \text{ in } H_2O}{Positively polarised centres}$ the following a che eplacing another at CH_3Cl + ble bond or C=C tr	R+ <u>carbocation</u> mical equations tom/group HCI		8		
188	covalent bo H_3O^+ Positively charged ions There are different of a) substitution CH_4 b) addition: m C_2H_4 c) elimination	nd. SO ₃ chemical reaction on: reaction with + Cl ₂ nolecule adding a + Br ₂ n: molecule remo	n types shown in t one atom/group re → (across a C=C dou → C	$\frac{H \text{ in } H_2O}{Positively polarised centres}$ the following a che eplacing another at CH_3Cl + ble bond or C=C tr	R+ mical equations tom/group HCI iple bond		8		0
188	$\begin{array}{c} \text{covalent bo}\\\hline H_3O^+\\\hline \text{Positively charged ions}\\\hline \\ \hline $	$\begin{array}{c} \text{SO}_{3} \\ \hline \text{Chemical reaction} \\ \text{on: reaction with} \\ + & Cl_{2} \\ \text{nolecule adding a} \\ + & Br_{2} \\ \text{n: molecule remo} \\ H \end{array}$	across a C=C dou	$\begin{array}{c c} H \text{ in } H_2 O \\ \hline \text{Positively polarised centres} \\ \hline \text{the following a che} \\ \hline \text{eplacing another at} \\ \hline \text{CH}_3 Cl + \\ \hline \text{ble bond or } C=C \text{ tr} \\ 2H_4 Br_2 \\ \hline \text{ad a } C=C \text{ double bo} \\ \hline C_2H_4 + \\ \end{array}$	R+ carbocation mical equations tom/group HCI iple bond pnd H ₂ O				
188	$\begin{array}{c} \text{covalent bo} \\ \hline H_3O^+ \\ \hline Positively charged ions \\ \hline \end{array}$ There are different of a substitution CH_4 b) addition: m C_2H_4 c) elimination C_2H_5OI d) condensat	SO_3 chemical reaction on: reaction with $reaction with reaction with reaction with reaction with reaction with reaction with reaction + Cl_2nolecule adding a + Br_2n: molecule removes Hion: 2 molecules$	n types shown in to one atom/group re → (across a C=C dou → C ved leaving behin →	$\begin{array}{c c} H \text{ in } H_2 O \\ \hline Positively polarised centres \\ \hline Posi$	R+ <u>carbocation</u> mical equations tom/group HCI iple bond pond H2O removed at join				0
188	$\begin{array}{c} \text{covalent bo} \\ \hline H_3O^+ \\ \hline Positively charged ions \\ \hline \end{array}$ There are different of a substitution CH_4 b) addition: m C_2H_4 c) elimination C_2H_5OI d) condensat	SO_3 chemical reaction on: reaction with $reaction with reaction with reaction with reaction with reaction with reaction with reaction + Cl_2nolecule adding a + Br_2n: molecule removes Hion: 2 molecules$	across a C=C dou wed leaving behin join together and DH	$\begin{array}{c c} H \text{ in } H_2 O \\ \hline \text{Positively polarised centres} \\ \hline \text{the following a che} \\ \hline \text{eplacing another at} \\ \hline \text{CH}_3 Cl + \\ \hline \text{ble bond or } C=C \text{ tr} \\ 2H_4 Br_2 \\ \hline \text{ad a } C=C \text{ double bo} \\ \hline C_2H_4 + \\ \end{array}$	$\begin{array}{c} R^+ \\ \hline carbocation \\ \hline mical equations \\ tom/group \\ HCl \\ \hline hCl \\ \hline hcl \\ \hline hcl \\ \hline hcl \\ hcl \\ \hline hcl \\ H2O \\ \hline removed at join \\ \hline H_3 + H2C \\ \end{array}$)			0
188	$\begin{array}{c} \text{covalent bo} \\ \hline H_3O^+ \\ \hline Positively charged ions \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	chemical reaction + Cl ₂ nolecule adding a + Br ₂ n: molecule remo H ion: 2 molecules + CH ₃ COC + CH ₃ COC	across a C=C dou wed leaving behin join together and H	$\begin{array}{c} H \text{ in } H_2 O \\ \hline Positively polarised centres \\ \hline Positi$	$\begin{array}{c} R^+ \\ \hline carbocation \\ \hline mical equations \\ tom/group \\ HCI \\ \hline hCl \\ H2O \\ \hline hcl \\ \hline \hline hcl \\ \hline hcl \\ \hline hcl \\ \hline \hline hcl \\ \hline hcl \\ \hline \hline hcl \hline \hline \hline \hline hcl \hline \hline \hline hcl \hline \hline \hline \hline hcl \hline \hline \hline \hline hcl \hline \hline \hline \hline \hline hcl \hline \hline \hline \hline \hline \hline hcl \hline \hline \hline \hline \hline \hline \hline hcl \hline \hline \hline \hline \hline \hline hcl \hline \hline$	D	3		©
188 189	covalent bo H_3O^+ Positively charged ions There are different of a) substitution CH_4 b) addition: m C_2H_4 c) elimination C_2H_5OI d) condensat CH_3OH + methanol e) hydrolysis CH_3OCOCH	chemical reaction + Cl ₂ nolecule adding a + Br ₂ n: molecule remo H ion: 2 molecules - CH ₃ COC ethanoic acid : molecules splits - H ₂	across a C=C dou wed leaving behin join together and H is into 2 molecules	$\begin{array}{c c} H \text{ in } H_2 O \\ \hline \text{Positively polarised centres} \\ \hline \text{the following a che} \\ \hline \text{eplacing another at} \\ \hline \text{CH}_3 Cl + \\ \hline \text{ble bond or } C=C \text{ tr} \\ 2H_4 Br_2 \\ \hline \text{a d a } C=C \text{ double bo} \\ \hline C_2H_4 + \\ \hline \text{a small molecule} \\ \hline \text{CH}_3 OCOC \\ \hline \text{methyl ethanoate} \\ \hline \text{s with small molecule} \\ \hline \text{CH}_3 OH + \\ \hline \end{array}$	$\begin{array}{c} R^+ \\ \hline carbocation \\ \hline mical equations \\ tom/group \\ HCI \\ \hline tiple bond \\ \hline mathbf{b} \\ \hline mathbf{b} \\ H2O \\ \hline mathbf{c} \\ H3 + H2C \\ \hline mathbf{wate} \\ \hline mathbf{c} $	D)
188 189	covalent bo H_3O^+ Positively charged ions There are different of a) substitution CH_4 b) addition: m C_2H_4 c) elimination C_2H_5OI d) condensat CH_3OH + methanol e) hydrolysis CH_3OCOCH methyl ethanoate	SO_3 chemical reaction on: reaction with $+ Cl_2$ nolecule adding a $+ Br_2$ n: molecule remo H ion: 2 molecules $- CH_3COC$ ethanoic acid : molecules splits $- J_3 + H_2C$ water	a types shown in the types shown in the types shown in the types are according to the type are acco	$\begin{array}{c} H \text{ in } H_2 O \\ \hline Positively polarised centres \\ \hline Positi$	$\begin{array}{c} R^+ \\ \hline \\ \hline \\ rearboccation \\ \hline \\ mical equations \\ \hline \\ tom/group \\ HCI \\ \hline \\ HCI \\ \hline \\ \\ \hline \\ \\ hCI \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	D)
188 189	$\begin{array}{c} \text{covalent bo} \\ \hline H_3O^+ \\ \hline Positively charged ions \\ \hline \end{array}$ There are different of a substitution CH_4 b) addition: m C_2H_4 c) elimination C_2H_5OI d) condensate CH_3OH + methanol e) hydrolysis CH_3OCOCH methyl ethanoate f) oxidation:	sond. SO ₃ chemical reaction on: reaction with e^{+} Cl ₂ nolecule adding a + Br ₂ n: molecule removed H ion: 2 molecules - CH ₃ COC ethanoic acid : molecules splits H ₃ + H ₂ C water increase in oxyg	across a C=C dou wed leaving behin join together and OH	$\begin{array}{c} H \text{ in } H_2 O \\ \hline Positively polarised centres \\ \hline Positi$	$\begin{array}{r} R^+ \\ \hline carbocation \\ \hline mical equations \\ \hline mical equations \\ \hline mical equations \\ \hline mical equations \\ \hline HCI \\ \hline hCI \\ \hline hcl \\ \hline \hline hcl \\ \hline \hline hcl \\ \hline hcl \\ \hline hcl \\ \hline hcl \\ \hline \hline hcl \hline \hline \hline hcl \\ \hline \hline hcl \hline \hline \hline \hline hcl \hline \hline \hline hcl \hline \hline \hline \hline \hline hcl \hline \hline \hline \hline hcl \hline \hline \hline \hline hcl \hline \hline \hline \hline \hline \hline hcl \hline \hline \hline \hline \hline \hline hcl \hline \hline$	D)
188 189	covalent bo H ₃ O ⁺ Positively charged ions There are different of a) substitution CH4 b) addition: m C ₂ H ₄ c) elimination C ₂ H ₅ OI d) condensat CH ₃ OH + methanol e) hydrolysis CH ₃ OCOCH methyl ethanoate f) oxidation: CH ₃ OH methanol	chemical reaction on: reaction with e^{+} Cl ₂ nolecule adding a + Br ₂ n: molecule removed H ion: 2 molecules - CH ₃ COC ethanoic acid = molecules splits - H ₂ COC = molecules splits - molecules -	across a C=C dou \rightarrow C \rightarrow	$\begin{array}{c} H \text{ in } H_2 O \\ \hline Positively polarised centres \\ \hline Positi$	$\begin{array}{r} R^+ \\ \hline carbocation \\ \hline mical equations \\ tom/group \\ HCI \\ \hline tiple bond \\ \hline hCl \\ \hline tiple bond \\ \hline hCl \\ \hline hdl \\ H_2O \\ \hline removed at join \\ H_3 + H_2C \\ \hline wate \\ \hline hdl \\ wate \\ \hline hdl \\ H_3 + H_2C \\ \hline wate \\ \hline hdl \\ hdl \\$	D)
188 189	$\begin{array}{c} \text{covalent bo} \\ \hline H_3O^+ \\ \hline Positively charged ions \\ \hline There are different of a substitution of the condition of th$	chemical reaction on: reaction with e^{+} Cl ₂ nolecule adding a + Br ₂ n: molecule remo H ion: 2 molecules - CH ₃ COC $e^{thanoic acid}$ = molecules splits - H ₂ C = molecules splits - molecules splits	across a C=C dou across a C=C dou wed leaving behin join together and H	H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H4Br ₂ ad a C=C double bo C ₂ H ₄ + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH + methanol o with a loss of ele HCOOH + methanoic acid tio with a gain of el	$\begin{array}{c} R^+ \\ \hline \\ \hline \\ \hline \\ removed at join \\ H_2O \\ \hline \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ \hline \\ \\ removed at join \\ H_3 - H_2O \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	р Н)
188 189	$\begin{array}{c} \text{covalent bo} \\ \hline H_3O^+ \\ \hline Positively charged ions \\ \hline There are different of a substitution of the condition of th$	chemical reaction on: reaction with e^{+} Cl ₂ nolecule adding a + Br ₂ n: molecule remo H ion: 2 molecules - CH ₃ COC $e^{thanoic acid}$ = molecules splits - H ₂ C = molecules splits - molecules splits	across a C=C dou across a C=C dou wed leaving behin join together and H	$\begin{array}{c} H \text{ in } H_2 O \\ \hline Positively polarised centres \\ \hline Positi$	$\begin{array}{c} R^+ \\ \hline \\ \hline \\ \hline \\ removed at join \\ H_2O \\ \hline \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ \hline \\ \\ removed at join \\ H_3 - H_2O \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	р Н)
188 189	covalent bo H ₃ O ⁺ Positively charged ions There are different of a) substitution CH4 b) addition: m C ₂ H ₄ c) elimination C ₂ H ₅ OI d) condensat CH ₃ OH + methanol e) hydrolysis CH ₃ OCOCH methyl ethanoate f) oxidation: CH ₃ OH methanol g) reduction: CH ₃ COCH ₃ propanone	sond. SO ₃ chemical reaction on: reaction with e^{+} Cl ₂ nolecule adding a + Br ₂ n: molecule removed H ion: 2 molecules - CH ₃ COC ethanoic acid : molecules splits - H ₃ + H ₂ C water increase in oxyg + $\frac{1}{2}O_2$ decrease in oxyg + H ₂ O	across a C=C dou across a C=C dou double construction of the con	H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H4Br ₂ ad a C=C double bo C ₂ H ₄ + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH + methanol o with a loss of ele HCOOH + methanoic acid tio with a gain of el	$\begin{array}{c} R^+ \\ \hline \\ \hline \\ \hline \\ removed at join \\ H_2O \\ \hline \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ \hline \\ \\ removed at join \\ H_3 - H_2O \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	р Н)

233	Amines are organic derivatives of ammonia in which one or more hydrogen atoms of ammonia has been replaced by an alkyl group.					<u>(;)</u>
	Amines can be classified as prir		ccording to the number of alkyl		-	-
	groups attached to the nitrogen					
	Primary Amines	Secondary Amines	Tertiary Amines			
	••	••	••			
234	р N - М - М	P N MININ	N	8		\odot
234	R	R H	P R"		ήΘ	
			R			
	Н	*R'	R'			
	1 alkyl groups attached to the N atom 2 I know that amines react with ac		3 alkyl groups attached to the N atom			
235		2 + HCI → CH ₃ NH ₃ +C	N-	8		\odot
	e.g. CH ₃ NH ₂ Primary and secondary amines					
	Tertiary amines do not display h					
			points than isomeric tertiary			
	amines	0 0				
236	 shorter chain length and 	nines are more soluble in wa	ter due to hydrogen bonding	8		\odot
237	Amine CH ₃ CH ₂ C	H_2NH_2 C_2H_5NHCH	H ₃ (CH ₃) ₃ N		-	
	Type Primary A					
	Mass of 1mol 59g	9	59g			
	Boiling Point 49°C		<u>3°C</u>			
	Amines are weak bases and dis nitrogen atom has a lone pair of					
	producing hydroxide ions.					
	e.g.					
	$NH_3 + H_2C$	O ===≥ NH.	₄⁺ + OH⁻			
238	$CH_3CH_2NH_2 + H_2C$	O = CH₃CH₃	2NH3 ⁺ + OH ⁻	6		\odot
	ethylamine + wate		-			
		(н) +			
	H CH ₂ CH ₃ H C		'н + ОН -			
		H ⁻	H ₂ CH ₃			
	Benzene (C ₆ H ₆) is the simplest	member of the class of aror	natic hydrocarbons.			
239	· · ·	stinctive structural formula a	-			
239 240		ue to the delocalisation of ele	ectrons in the	8		\odot
241	conjugated system					
		e part in addition reactions a tructure due to the 6 delocal				
	The structure of benzene can be	•	ybridiation, sigma bonds, pi			
	bonds and electron delocalisatic Benzene's ring structure contains sp ²		n unhybridised p-orbitals form π –			
	hybridisation	not involved in bonds				
	6 carbons and 6 hydrogen lie in		s are described as delocalised ns form 2 electron rings			
	 same plane 120° angle between carbons and 	six unhybridised • stability	of benzene from clouds of			
242	hydrogens	-	ed electrons repulsion between delocalised	8		\odot
272	- all bonds shown are sigma σ -bonds	(hydrogens not drawn in diagram) electron	rings flatten benzene structure so		' e	
			ng becomes planar			
		C C	C			
	H all σ - bonds H	() ^ ` () <				
		$\neg \forall \forall \forall \neg$	π-bonds			
1						1

					Tra	ffic L	ight
	AH Chem	listry: Orga	nic Chemistr		σ	ber	en
	Se	ection 3c: Stereod	chemistry	chem	red	amber	green
249	Isomers are molecules	with the same molecu	ular formula but different s	tructural formulae.			
250	 structural isomers occur when atoms are bonded together in a different order in application 					\square	\odot
	each isomer.	then the order of the h	onding in the atoms is the	same but the			-
251 252	spatial arrangement of				(\mathfrak{S})	\odot	\odot
292	There are two types of			-			
			icted rotation around a C=				
		 two different groups attached to each carbon atom that makes up the C=C bond CIS isomer if both groups are on the SAME side of C=C 					
253a	o TRAN		s are on the SAME side o				
254a		trans-but-2-ene	cis-but-2-ene		$\overline{\mathbf{S}}$	\odot	\odot
255a	н	₃C JH	H ₃ C CH ₃				
		C = C	C = C				
		H´ `CH₃	н⁄ `н				
			icted rotation around a car	rbon-carbon single			
	 bond in a cyclic compo two different qui 		n carbon atom that makes	up the C. C hand			
			ps are on the SAME side				
		n the ring structure					
253b		S isomer as both grou n the ring structure	ps are on the SAME side	of restricted C–C		_	_
254b						\square	\odot
255b	trans-1,2	-dibromocyclopropane	e cis -1,2-dibromocyclopro	opane			
		н	HH				
	Б	Sr C H	Br C Br				
	T I I I I I I I I I I I I I I I I I I I	C = C	C - C				
	Geometric isomers hav	e differences in physi	L H H cal properties e.g. melting	and boiling points			
			Point (°C) Boiling Point				
			39 +4				
256			06 +1		8	e	\odot
			in chemical properties. dration reactions but trans	-but-2-enedioic			
	acid as in the trans iso	mer the carboxyl grou	ps are pointing away from	each other			
257			ave four different groups a chiral carbon or chiral cent		8		\odot
259		s can be described as		u <i>e)</i> .		\square	0
	Optical isomers are as	ymmetric, non-superin	nposable mirror images of			1	
	<u>Non-superimposab</u> Images shown are direct		<u>Non-superimposable A</u> The following are optical ison				
	other and are therefore of		and X are in the same positio				
	(enantiomers)		Z are in different position.				
	W	Ŵ	Ŵ	Ŵ			
258					8	\odot	\odot
	Canz	7 m ^C v	CunZ V	Cany			
	X	L ^	X - X	-			
	У	У	Y	Z			
		dentical physical prope	erties except for their effect	ct on plane-			
260	polarised light.	oro onticelly satisfy	o those relations and the state	ad light by the			
261		s are optically active as but in opposite directic	s they rotate plane-polaris	sed light by the	$\overline{\mathfrak{S}}$	\bigcirc	\odot
262	Optical isomers have id	dentical chemical prop	erties, except when in a c				
			re only one optical isomer				
263		•	mixed in equal amounts and light cancels out and called			\odot	\odot

		Trat	ffic Li	ght
	AH Chemistry: Inorganic Chemistry JAB	red	amber	green
T		 ŭ	am	gu
264 265	I know that elemental microanalysis is used to determine the masses of C, H, O, S and N in a sample of an organic compound in order to determine its empirical formula. I know that an empirical formula shows the simplest ratio of the elements in a molecule.	3		\odot
266 267	 I can determine an empirical formula from elemental microanalysis data. I know that elemental microanalysis can be determined from: combustion product masses 	\odot	:	\odot
268	 percentage product by mass I know that mass spectrometry can be used to determine the accurate gram formula 	6	:	\odot
200	mass (GFM) and structural features of an organic compound. I know in mass spectrometry, a small sample of an organic compound is bombarded by	 0	\bigcirc	•
269 270	high-energy electrons and this removes electrons from the organic compound is bombarded by positively charged molecular ions known as parent ions. I know that the molecular ions then break into smaller positively charged ion fragments and a mass spectrum is obtained showing a plot of the relative abundance of the ions detected against the mass-to-charge (m/z) ratio.	3	:	\odot
281 282	I can use mass-to-charge ratio of the parent ion to determine the GFM of the molecular ion, and determine a molecular formula using the empirical formula. I know that the fragmentation data from mass spectrometry can be interpreted to gain structural information.	();	:	\odot
283 284	I know that Infrared spectroscopy is used to identify certain functional groups in an organic compound. I know that when infrared radiation is absorbed by organic compounds, bonds within the molecule vibrate (stretch and bend) and the wavelengths of infrared radiation that are absorbed depend on the type of atoms that make up the bond and the strength of the bond.	3	:	3
285 286 287	I know that in infrared spectroscopy, infrared radiation is passed through a sample of the organic compound and then into a detector that measures the intensity of the transmitted radiation at different wavelengths. I know that the absorbance of infrared radiation is measured in wavenumbers, the reciprocal of wavelength, in units of cm ⁻¹ . I know characteristic absorptions by particular vibrations are given in the data booklet.	3	:	3
288	I can interpret infrared spectra.	\odot	\bigcirc	\odot
289	I know that proton nuclear magnetic resonance spectroscopy (proton NMR or ¹ H NMR) can give information about the different chemical environments of hydrogen atoms (protons or ¹ H) in an organic molecule, and about how many hydrogen atoms there are in each of these environments.	() ()	:	\odot
293	I can explain how ¹ H nuclei emit radiation that can be plotted on a spectrum I know that In a ¹ H NMR spectrum the chemical shift, δ , (peak position) is related to the environment of the ¹ H atom and is measured in parts per million (ppm). I know that chemical shift values for ¹ H in different chemical environments are given in the data booklet I know that the area under the peak is related to the number of ¹ H atoms in that environment and is often given by an integration curve on a spectrum. I know that the height of an integration curve is proportional to the number of ¹ H atoms in that environment, and so a ratio of ¹ H atoms in each environment can be determined.	ŝ		0
295	I know that the standard reference substance used in ¹ H NMR spectroscopy is tetramethylsilane (TMS), which is assigned a chemical shift value equal to zero.	$\overline{\mbox{\scriptsize (i)}}$	٢	\odot
296 297	I know that ¹ H NMR spectra can be obtained using low-resolution or high-resolution NMR. NMR. I know that high-resolution ¹ H NMR uses higher radio frequencies than those used in low-resolution ¹ H NMR and provides more detailed spectra.	\odot	:	3
298 299	I know that in a high-resolution ¹ H NMR an interaction with ¹ H atoms on neighbouring carbon atoms can result in the splitting of peaks into multiplets. I know that the number of ¹ H atoms on neighbouring carbon atoms will determine the number of peaks within a multiplet and can be determined using the n+1 rule, where n is the number of ¹ H atoms on the neighbouring carbon atom.	(<u>)</u>	()	\odot
300	I can analyse low- and high-resolution ¹ H NMR spectra, and can sketch low-resolution ¹ H NMR spectra for any given compound.	$\overline{\mbox{\scriptsize (i)}}$	\bigcirc	\odot

	All Chamistry, Decembing Chamistry	Tra	ffic L	ight
	AH Chemistry: Researching Chemistry JAB Section 4b: Skills Involved in Practical Work	red	amber	green
-	Data can be tabulated using appropriate headings and units of measurement Data can be represented as a scatter graph with suitable scales and labels. A straight or curved line of best fit can be drawn to represent the trend observed in the data.			
313a 313b 313c	Time (minutes) Volume of Gas (cm ³) 0 0 5 14 10 28 15 44 20 58 25 65 30 68	8	::	0
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
313d 313e	Average (mean) values can be calculated from raw data.• The first (rough) titre should be excluded from the calculation of the average value• Rogue points should be identified and eliminated from calculation of the averages $\overline{\text{Titration}}$ $\overline{\text{Start Volume}}$ $\overline{\text{Final Volume}}$ (cm^3) (cm^3) (cm^3) 1 0.0 11.4 11.4 2 11.4 21.7 10.3 3 21.7 36.2 14.5	8	:	☺
	4 36.2 46.7 10.5			
313f	Beaker Measuring Cylinder Pipette Burette Beakers are of little use in measuring the volume of liquids accurately and only provide a rough guide to the volume. Measuring Cylinders have often used to measuring volumes and the accuracy is ±0.5cm ³ (i.e. half the smallest division on the measuring cylinder) Pipettes (used with a pipette filler) give much more accurate volumes than measuring cylinders with accuracy like ±0.06cm ³ typical in a 25cm ³ pipette. Burettes are used for measuring non-standard volumes of liquid but are not as accurate as a pipette as the error from the top reading of the scale.	$\overline{\mathbf{S}}$:	0
313g	The reproducibility of results where measurements have been made can be commented on: Accurate Precise Precise Precise Not Pr	8	::	0
313h	Quantitative stoichiometric calculations can be performed: no. of mol thiosulphate = volume x concentration = $0.0205 \times 0.10 = 0.00205 \text{ mol}$ $2S_2O_3^{2^-} + I_2 \longrightarrow 2I^- + S_4O_6^{2^-}$ 2mol & 1mol & 0.001025mol & 0.001	 ଞ		☺
313i	Spectral data can be analysed for: Proton NMR Spectroscopy Absorption Spectroscopy	 $\overline{\otimes}$:	©
	 <u>(Section 3d Outcomes 269-282)</u> (Section 3d Outcomes 283-288) (Section 3d Outcomes 289-300) (Section 1a Outcomes 17-18) A control experiment can be completed in a practical validate a technique or procedure as accurate. e.g. In the quantitative analysis of vitamin C in orange juice the accuracy of the measurement of vitamin C in orange juice can be checked by using a pure vitamin C solution known concentration. repeat the practical to check the concentration calculated in the practical is accurate against the known concentration of the control experiment. 	 3	:	☺

	All Character v Deceardating Character v	Tra	ffic Li	ight
	AH Chemistry: Researching Chemistry JAB Section 3c: Stoichiometric Calculations	red	amber	green
∎ 314 315	Stoichiometry is the study of mole relationships involved in chemical reactions. • Chemical equations can be written and balanced • State symbols used for solid (s), liquid (l), gas (g) and aqueous (aq) • Mole ratios can be used to work out quantities of other reactants or products $CaCO_3(s) + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O(l) + CO_2(g)$ 1mol 2mol 0.1mol 0.2mol	8	:	0
316b 316c 316d 320d	For solutions, the number of moles, the volume of solution or the concentration of a solution can be calculated from the other quantities. Calculate the number of moles of solute dissolved in 200cm ³ of 0.1 mol l ⁻¹ solution. $n = V \times C$ $= 0.2$ litres $\times 0.1$ mol l ⁻¹ $= 0.02$ mol l^{-1} $Calculate the concentration of solution. n = 0.5 \text{mol} V = 0.4 litres C = ?C = \frac{n}{V} = \frac{0.5}{0.4} = 1.25 \text{ mol} l-1 V = \frac{n}{C} = \frac{0.1}{0.02} = 5 \text{ mol} l-1$	3	:	٢
320a	Gram formula mass (GFM) is calculated from the formula and Relative Atomic Mass: e.g.: Calculate the gfm of calcium nitrate: gfm Ca(NO ₃) ₂ = $(1x40.1) + (2x14) + (6x16) = 40.1 + 28 + 96 = 164.1 \text{ g mol}^{-1}$	3		0
320b 320c	Calculations turning masses into number of moles (and vice versa) require the gfm:Calculate the number of moles in 0.328g of calcium nitrate?Calculate the mass of 0.05mol of calcium nitrate?gfm Ca(NO_3)_2 = 164.1g mol^{-1} mo. of mol = $\frac{mass}{gfm} = \frac{0.328}{164.1} = 0.002mol$ Calculate the mass of 0.05mol of calcium nitrate?mass = no. of mol x gfm = 0.05 x 164.1 = 8.21g	⊗	:	٢
316a	$ \begin{array}{c c} \hline \text{The mass of solute in solutions can be calculated.} \\ e.g. calculate the mass of sodium oxide dissolved in 200cm^3 or 0.025mol l^{-1} solution. \\ gfm Na_2O = (2x23) + (1x16) \\ = 46 + 16 \\ = 62g \text{ mol}^{-1} \end{array} \begin{array}{ c c c c c c c } n = ? & V = 0.2 \text{ litres } C = 0.025 \text{mol } l^{-1} \\ n = V & x & C \\ = 0.2 \text{ litres } x \ 0.025 \text{ mol } l^{-1} \\ = 0.05 \text{ mol} \end{array} \begin{array}{ c c c c } m = mass (g) \\ n = number \text{ of moles } (mol) \\ n = gram \text{ formula mass } (g \text{ mol}^{-1}) \\ m = ? & n = 0.5 \text{mol} & gfm = 62g \text{ mol}^{-1} \\ m = n & x & gfm \\ = 0.05 \text{ mol} & 1 \\ = 3.1g \end{array} $	8		٢
317	 Percentage by mass is the mass of solute made up to 100 cm³ of solution. a 1% starch indicator solution contains 1g of starch dissolved deionised water and the solution made up to 100cm³ with deionised water. 	3	٢	\odot
318	 Percentage by volume is the number of cm³ of solute made up to 100 cm³ of solution. A 10% ethanol solution contains 10cm³ of ethanol and the solution made up to 100cm³ with deionised water. 	\odot	:	\odot
319	The unit ppm stands for parts per million and refers to 1 mg per kg or 1 mg per litre. The steel from a sword blade of mass 1300 g was found to have a vanadium concentration of 71 ppm. Calculate the total mass of vanadium present in the sword blade. An adrenaline dose contains 0.3 cm³ of 500 ppm adrenaline solution. Calculate the mass of adrenaline, in mg, delivered in one dose. 71ppm = 71mg Vanadium in 1kg steel 500ppm = 500mg per litre 1kg steel contains 71mg Vanadium 1000cm³ contains 500mg adrenaline 1300g steel contains 71mg Vanadium x ¹³⁰⁰ / ₁₀₀₀ 0.3cm³ contains 500mg adrenaline x ^{0.3} / ₁₀₀₀ = 92.3mg Vanadium 1300/1000	8		٢
320e	Calculations using volumes of gases include:Calculate the final volume and composition when 10cm³ of butane gas is completely burned in 100cm³ of oxygen.Calculate the volume of carbon dioxide formed when 2g of calcium carbonate is reacted with excess hydrochloric acid. Molar volume = 24litresAll measurements made at the same temperature and pressure.C4H10(g) + $6\frac{1}{2}O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{1(g)}$ Calculate the volume of carbon dioxide formed when 2g of calcium carbonate is reacted with excess hydrochloric acid. Molar volume = 24litres $C_4H_{10(g)} + 6\frac{1}{2}O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{1(g)}$ gfm CaCO_3 = (1x40.1)+(1x12)+(3x16) = 100.1g no. of mol = $\frac{mass}{gfm} = \frac{2}{100.1} = 0.02 \text{mol}$ $10cm^3$ $65cm^3$ $40cm^3$ $10cm^3$ $65cm^3$ $40cm^3$ $10cm^3$ $65cm^3$ $40cm^3$ $10cm^3$ $65cm^3$ $40cm^3$ $0.02mol$	8	3	٢

320f	1mol 0.060mol of CaCO ₃ needs 0 available ∴ HCl is the lin CaCO 1mol 0.050mol (needed) 0.025mol of HCl needs 0.050 ∴ HCl is the limiting factor a	which is the limit te reacts with 50 (3x16) = 100.1g 0.1 = 0.060 mol $0.3 + 2HCl \rightarrow 0.120 mol$ 0.120 mol 0.120 mol of HCl the miting factor and $0.3 + 2HCl \rightarrow 0.000$ $0.3 + 2HCl \rightarrow 0.000$ 0.000 mol of CaCO ₃ to and CaCO ₃ is in the	ng factor a cm ³ of 0.5 HCl r CaCl ₂ + to fully read d CaCO ₃ is nately CaCl ₂ + to fully read excess.	ind which reaction of mol l ⁻¹ hydro no. of mol = vo = 0. H ₂ O + CO ct but only 0. in excess. H ₂ O + CO ct. 0.060mol	bochloric acid. Dolume x concentration 05litres x 0.5 mol I ⁻¹ 025mol (available) D2 025mol CaCO ₃ is D2 CaCO ₃ is available	$\overline{\mathbb{S}}$	÷	٢
320h	Empirical Formula is worked of e.g. Calculate the empirical f completely producing 11 • Mass of carbon in CO ₂ • Mass of hydrogen in H • Mass of oxygen = 5g – Elements Mass or % Divide by RAM Divide through by smallest number Empirical Formula	$\frac{1.89 \text{ g of } \text{CO}_2 \text{ an}}{2} = \frac{12}{44} \times 11.89 \text{ g}} = \frac{12}{44} \times 11.89 \text{ g}}{2} = \frac{2}{12} \times 6.08 \text{ g}} = \frac{12}{44} \times 11.89 \text{ g}}{2} = 12$	00 g of an nd 6·08 g c = 3.243g = 0.676g	organic com of H ₂ O as the	pound was burned	ŝ	:	٢
320g 321	Percentage Yield can be call e.g. Calculate the percentag reacting with excess nitroger $N_{2(g}$ % Yield = $-Th$	e yield if 20kg of n.) + 3H _{2(g)} = 3mol 6g 12g 12kg <u>Actual Yield</u> neoretical Yield	f ammonia x100 = $\frac{2}{6}$	is formed fro 2NH _{3(g)} 2mol 34g 68g 68kg (theo 20kg 68kg x100 =	yield. om 12kg of hydrogen oretical yield) = 29.4%	ŝ	:	٢
322	The percentage yield actuall mass transfer or pu mechanical losses	y achieved in a urification of product		reduced by: eactions	equilibrium position	(i)	:	٢

	AH Chamistry: Pasaarshing Chamistry		Traf	ffic Li	ght
	AH Chemistry: Researching Chemistry Section 4d: Gravimetric Analysis	JAB chem	red	amber	green
323 324	 Gravimetric analysis can determine the mass of an element or compound in a an accurate electronic balance can be used to determine the mass of substar the tare function on the balance allows the balance to be set to zero object is on top of the balance pan weighing boats are used to measure substances on a balance without contan weighing by difference is used to accurately measure the mass of substance. The mass of an empty weighing bottle and stopper is measured and chemical is added to the bottle and reweighed. The difference is the substance in the bottle. 'weighing accurately approximately' is the term used to measure the exact massubstance on a balance but the mass is close to a specific mass stated Weigh accurately approximately 2g of substance should mean that a added close to 2.00g and was accurately measured to be 2.02g. heating to constant mass is used to remove all moisture from a substance whincrease the mass of the substance The substance is allowed to cool in a desiccator to prevent reabsorp The substance has its mass measured on the balance once cooled. Repeating the steps of heating, cooling and weighing until constant restrict on the balance. 	nce when an nination the mas of the ass of a a mass was nich would tion of water	\otimes		٢
325a 326	 Conversion of the substance can occur when the substance undergoes a predreaction to allow isolation and purification. The precipitate is separated from the filtrate the filtrate tested to ensure the reaction has gone to completion. the precipitate is washed, dried to constant mass and then weighed. 	cipitation	8		:
325b 327	 Conversion of the substance can also be achieved by volatilisation to allow iso purification. the substance is heated and any volatile products (often water) are e the substance is heated to constant mass and the final mass recorde 	vaporated.	$\overline{\mathbf{O}}$:	0

	All Chamister & Deservabing Chamister		Tra	ffic Li	ight
	AH Chemistry: Researching Chemistry		p	oer	en
	Section 4e: Volumetric Analysis chem		red	amber	green
328	 I am familiar with use of the technique of volumetric analysis, including: preparing a standard solution accurate dilution standardising solutions to determine accurate concentration titrating to obtain concordancy using burettes, pipettes and volumetric flasks choosing an appropriate indicator 				Û
329	A standard solution is a solution of accurately known concentration.		\odot	\odot	\odot
	Standard solutions can be prepared by:)	\bigcirc	•
330	 weighing a primary standard accurately dissolving in a small volume of solvent (usually deionised/distilled water) in a beaker transferring the solution and rinsings into a volumetric flask making up to the graduation mark with solvent stoppering and inverting 		\odot	:	0
331	 Standard solutions can be prepared by accurate dilution pipette an appropriate volume of a standard solution into a volumetric flask make up to the graduation mark with solvent (water), stoppering and inverting. 		\odot	:	\odot
332	Primary standards must have the following properties: high state of purity stable when solid and in solution soluble reasonably high GFM		6		\odot
333	Examples of primary standards include: sodium carbonate hydrated oxalic acid potassium hydrogen phthalate Na2CO3 H2C2O4·2H2O KH(C8H4O4) potassium iodate silver nitrate potassium iodate potassium dichromate AgNO3 KIO3 K2Cr2O7		\odot	:	:
334 335	Sodium hydroxide cannot be used as a primary standard: a relatively low GFM unstable as a solid (absorbs moisture) unstable as a solid (absorbs moisture)		\odot	:	0
336	• Sodium hydroxide solution must be standardised before being used in volumetric analysis. Acid-base titrations are used for volumetric analysis between acids and bases. e.g. Calculate the number of moles of sulphuric acid which reacts with 14.7cm ³ of 0.5mol l ⁻¹ NaOH solution. no. of mol = volume x concentration = 0.0147 litres x 0.5mol l ⁻¹ = 0.00735mol H ₂ SO ₄ + 2NaOH \rightarrow Na ₂ SO ₄ + 2H ₂ O 1mol 2mol 1mol 2mol 2mol		3	:	Û
337	$\begin{array}{c} \hline 0.00730\text{ mol} & \hline 0.01470\text{ mol} \\ \hline 0.01470\text{ mol} \\ \hline 0.01470\text{ mol} \\ \hline 0.00130\text{ mol} \\ \hline 0.00130\text{ mol} \\ \hline 0.00130\text{ mol} \\ \hline 0.000448\text{ mol} \\ \hline 0.000672\text{ mol} \\ \hline 0.000448\text{ mol} \\ \hline 0.000448\text{ mol} \\ \hline 0.000672\text{ mol} \\ \hline 0.000448\text{ mol} \\ \hline 0.00048\text{ mol} \\ \hline 0.00048\text$		$\overline{\mathbf{S}}$:	©
338	$\begin{array}{c} \mbox{Complexometric titrations are based on reactions using complexometric reagents like} \\ \mbox{E.D.T.A. to form complexes with metal ions to determine the concentration of metal ions.} \\ \mbox{e.g. Calculate the number of moles of Ni^+ that reacts with 23.05cm^3 of 0.01 mol l^1 E.D.T.A} \\ \mbox{no. of mol = volume x concentration = 0.02305 litres x 0.01mol l^1 = 0.0002305mol} \\ \mbox{E.D.T.A + Ni^{2+} } & \rightarrow Ni^{2+} / \mbox{E.D.T.A. Complex} \\ \mbox{1mol} & \mbox{1mol} \\ \mbox{0.0002305mol} \\ \end{array}$		\odot	:	:)
339 340 341	 Back titrations are used to find the number of moles of a substance by reacting it with an excess volume of a reactant of known concentration. An excess of a known reactant (e.g. <i>standardised hydrochloric acid</i>) is added to the unknown reactant (e.g. <i>calcium carbonate</i>) and allowed to fully react. The unreacted leftover reactant (e.g. <i>hydrochloric acid</i>) is then titrated against another chemical (e.g. <i>standardised sodium hydroxide</i>) to calculate the number of moles of known reactant that was left over. The number of moles of known reactant (e.g. <i>hydrochloric acid</i>) which reacted with the unknown chemical (e.g. <i>calcium carbonate</i>) is calculated by subtracting the number of moles of known reactant leftover (e.g. <i>hydrochloric acid</i>) from the number of moles at the start. The initial number of moles of the unknown substance (e.g. <i>calcium carbonate</i>) is then calculated using stoichiometry in a balanced chemical equation. back titrations are useful when working out the quantity of substance in a solid with a low solubility. 		8		0

	All Chamistery Deservables - Chamistery	Tra	ffic L	ight
	AH Chemistry: Researching Chemistry	р	ber	en
	Section 4f: Practical Skills & Techniques chem	red	amber	green
342	 Colorimetry can be used to measure the concentration of a species based on its absorbance of a particular wavelength of light. It involves: preparing a series of standard solutions of an appropriate concentration choosing an appropriate colour or wavelength of filter complementary to the colour of the species being tested using a blank preparing a calibration graph 	\odot		©
343 344 345 346	 Colorimetry uses the relationship between colour intensity of a solution and the concentration of the coloured species present. The higher the concentration of the species the higher the absorbance of light colorimeter (spectrophotometer) measures the absorbance of light of a series of standard solutions absorbance data is used to plot a calibration graph against concentration solutions with unknown concentration are tested the absorbance obtained can determine the concentration of the species on the calibration curve. the solution of unknown concentration must have an absorbance that must lie in the straight line section of the calibration graph. 	ŝ		0
347 348 349	 Distillation is used for identification and purification of organic compounds the boiling point of a compound can be determined by distillation boiling point is one of the physical properties which can identify compounds the more volatile compound (with the lower boiling point) is separated from the less volatile compound and can purify the more volatile compound. 	6		0
350 351 352	 Heating under reflux allows heat energy to be applied to a chemical reaction mixture over an extended period of time without volatile substances escaping. reaction mixture is placed in a round-bottomed flask with anti-bumping granules flask is fitted with a condenser (water goes in end of condenser nearest round bottom flask) flask is heated using appropriate source of heat. (heating mantle for flammable liquids) 	ŝ	:	٢
353 354 355	 Vacuum filtration involves carrying out a filtration under reduced pressure and provides a faster means of separating a precipitate from a filtrate. The following can be used for vacuum filtration using a suction pump to help speed up the time taken for the filtration to take place.: 	\odot		::
356 357 364	The steps of recrystallisation to purify an impure solid include:dissolving an impure solid gently in a minimum volume of a hot solventhot filtration of the resulting mixture to remove any insoluble impuritiescooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impuritiesfiltering, washing and drying the pure crystals•the solventinsoluble impuritiesdissolved in the solventpure crystals•the solvent used for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures.one in which the solute to be obtained by evaporation of the solventunreactive with the solution (usually water)	ŝ		0
358 359 362	 Solvent extraction involves isolating a solute from a liquid mixture or solution by extraction using a different immiscible solvent in which the solute is also soluble. the lower layer is run off into a container and the upper layer is poured into a second container and this process is repeated to maximise the quantity of solute extracted. 	©	:	٢
360 361	 In solvent extraction, two immiscible solvents form two layers in the separating funnel. solute dissolves in both solvents and an equilibrium establishes between the two layers. the ratio of solute dissolved in each layer is determined by the equilibrium constant <i>K</i> 	\odot	٢	©

363	I know that the quantity of solute extracted is greater if a number of extractions using smaller volumes of solvent are carried out rather than a single extraction using a large volume of solvent.	$\overline{\mathbf{O}}$	(;)
365a 366 367	 The technique of melting point determination is important using melting point apparatus the melting point of a substance is the temperature range over which the solid first starts to melt, to when all of the solid has melted. the identity of a pure compound can be confirmed by melting point analysis and a comparison of the experimentally determined melting point with a literature or known melting point value. 	$\overline{\mbox{\scriptsize (s)}}$	٢
368	 The determination of the melting point of a compound can give an indication of the purity of a compound the presence of impurities in the compound lowers the melting point and broadens its melting temperature range this is caused by disruption in intermolecular bonding in the crystal lattice. 	$\overline{\mbox{\scriptsize (s)}}$	\odot
365b 369	 The determination of a mixed melting point involves mixing a small quantity of the product mixed with some of the pure compound. the melting point value and the range of the melting temperature can be used to determine if the product and the pure compound are the same substance. 	$\overline{\mathbf{O}}$	<u>(;)</u>
370 371 372	 Chromatography is used to separate the components present within a mixture substances are separated due to differences in polarity or molecular size. Thin-layer chromatography (TLC) causes separation by the distribution between the stationary phase (solid) and the mobile phase (liquid). different compounds will have different solubilities and adsorption to the two phases between which they are to be partitioned. TLC involves spotting the sample to be analysed near one end of a sheet of glass or plastic that is coated with a thin layer of an adsorbent. Plate is placed on end in a covered jar containing a shallow layer of solvent. solvent rises by capillary action up through the adsorbent and differential partitioning occurs between the components of the mixture the more strongly a given component of a mixture is adsorbed onto the stationary phase, the less time it will spend in the mobile phase and the more slowly it will migrate up the plate. 	\odot	\odot
373 374	 How far the compounds are carried on a TLC plate depends on how soluble the compounds are in the chosen solvent how well they adhere to the plate. a developing agent or ultraviolet light is normally required to visualise the spots on a TLC chromatogram. 	$\overline{\mbox{\scriptsize (s)}}$	\odot
375 376	I can calculate R _f values using: $R_{f} = \frac{\text{Distance travelled by the sample}}{\text{Distance travelled by the solvent}}$ • a compound always has the same R _f value (within experimental error) under the same conditions (temperature, solvent, and saturation levels)	\odot	\odot
377	 I know that the identity of a compound can be confirmed by: comparing the experimentally determined Rf values with a literature or known value determined under the same conditions making a direct comparison on a TLC plate between the compound being tested and the pure substance where a co-spot could be used 	$\overline{\mathbf{O}}$	©
378	 TLC is used to assess the purity of substances a pure substance should appear as a single spot (when spotted and developed on a TLC plate) the presence of more than one spot shows that impurities are present. (although some impurities may not be visible by TLC analysis). 	3	0