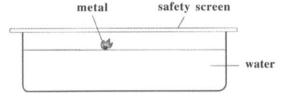
5.1

Section 5 Summary

5.1 Uses of Metals

- a) Unreactive metals are found uncombined in the Earth's crust:
 - o gold Expensive due to rarity
 - copper
- b) Most metals are found combined with other elements called ores.
 - o Aluminium
 - o Potassium
 - o Sodium
 - o Iron
- c) Some metals are extracted from their ores by heating with carbon.
 - o Iron
- d) Some metals are extracted from their ores using electricity (electrolysis)
 - o aluminium
- e) All metal elements are conductors of electricity
 - o non-metal elements are non-conductors of electricity.
 - o carbon (graphite) is the only non-metal conductor
- f) The specific properties of metals are related to their uses.

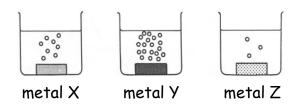
Property	Use	
low density	aluminium used in aircraft bodies	
malleability	shaping steel to make armour	
thermal (heat) conductivity	iron metal in a wire gauze in tripod	
electrical conductivity	copper wires in electrical devices	
strength	iron used in a bridge	


- g) An alloy is a mixture of metals (can be metals with non-metals).
- h) Alloys are made to have specific uses.

Alloy	brass	solder	'stainless' steel	cupro-nickel
Use	ornaments	rejoining loose wiring	cutlery	coins
Property of Alloy	Does not tarnish and has good appearance	Low melting point	Does not rust	Cheaper than silver and hard-wearing

Section 5 Summary

5.2 Reactions of Metals


- a) Metal oxides are produced in the reactions of metals with oxygen:
 - o potassium corrodes very quickly in air
 - o tin corrodes very slowly in air
 - o gold does not corrode in air
- b) Reactions of metals with water produce hydrogen.
 - PotassiumSodiumLithiumvigorously reacts
 with water

- o Magnesium very slowly reacts with water
- c) Reactions of metals with dilute acid produce a salt and hydrogen gas.
 - Magnesium e.g. magnesium + hydrochloric acid → magnesium chloride + hydrogen
 - o aluminium

o Calcium

- o zinc
- \circ iron = e.g. iron + sulphuric acid \rightarrow iron sulphate + hydrogen
- o tin
- lead
 e.g. lead + nitric acid → lead nitrate + hydrogen
- d) Unreactive metals do not react with oxygen, dilute acid or water
 - copper
 - silver
 - gold
- e) Differences in the reactions give an indication of the **reactivity** of the metals.

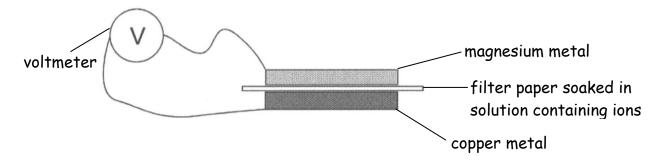
Reactivity	Metal
most bubbles → most reactive	metal Y
medium reactivity	metal X
least bubbles → least reactive	metal Z

f) The test for hydrogen is that it burns with a "pop".

Section 5 Summary

5.3 Corrosion

- a) Corrosion is a chemical reaction on the surface of a metal
 - o metal chemically changes from an element to a compound.
- b) Rusting is the corrosion of iron.
- c) Rusting results in a loss of structural strength.
 e.g. a old rusty metal bridge would collapse
- d) Both water and oxygen (from air) are required for rusting/corrosion.
- e) Rust indicator can be used to show the extent of the rusting process.
 - o The deeper the blue colour of rust indicator, the greater the rusting
- f) Acid rain increases the rate of corrosion.
- g) Salt spread on roads increases the speed of corrosion on car bodywork.
- h) Many ways to protect against corrosion involve a physical barrier:


Prevention Method	Explanation of Barrier	
painting		
greasing	Barrier to prevent air + water getting to metal underneath	
plastic coating	gerring to metal underneath	
electroplating	Coating an unreactive metal barrier over another metal	
tin-plating	Unreactive tin layer on outside protects iron underneath	
galvanising	Zinc layer on outside of iron protects iron underneath	
anodising	Increasing the protective outer layer on aluminium	

- i) Iron does not rust when attached to more reactive metals.
 - Galvanising is when zinc coats iron
- e.g. galvanised rubbish bins
- o scrap magnesium attached to iron
- e.g. underground iron pipes
- j) Anodising gives aluminium protection against corrosion
 - o increases the thickness of the oxide layer on aluminium surface.

Section 5 Summary

5.4 Batteries

- a) In a battery, electricity (electrical energy) is produced from a **chemical** reaction.
- b) Batteries need replacing when all the chemicals are **used up** in the chemical reaction.
- c) There are rechargeable batteries
 - o lead-acid battery used as a car battery
 - o nickel-cadmium battery.
- d) Electricity can be produced by forming a cell:
 - o connecting different metals together
 - o solution containing ions between the metals

- e) The purpose of the **ion solution** between the metals is to complete the circuit.
- f) The voltage between different pairs of metals varies:
 - Bigger the difference in reactivity in metals
 Bigger Voltage
 - Smaller the difference in reactivity in metals Smaller Voltage
 NB: The metals are listed in order of reactivity on page 6 of data booklet