

Bonding

3LO

Section 3: Learning Outcomes

Ir	ntei	m	ediate 1 Chemistry Unit 1: Chemistry In Act	ion
			Section 3: Bonding	1
LO	Lesson	Text Book	Learning Outcome	Int1
1	3.1	p30	Every element is made up of very small particles called atoms .	Int1
2	3.1	p30	Atoms of different elements are different.	Int1
3	3.2	p31	Some substances are made up of molecules.	Int1
4	3.2	p31	Molecules are made up of two or more atoms held together by strong bonds.	Int1
5	3.2 3.9 3.9	p34 p35 p39	Bonds between molecules are weak. a) substances made of molecules have low melting and boiling points b) substances made of molecules do not conduct electricity	Int1
6	3.8	p37	Some substances are made up of ions.	Int1
7	3.8	p38	Ions can be positively or negatively charged.	Int1
8	3.8	p38	Ionic compounds are made up of oppositely charged ions.	Int1
9	3.8 3.9 3.11	p37 p37 p37	Bonds between ions are strong. a) substances made of ions have high melting and boiling points b) substances made of ions conduct electricity when dissolved in water or molten	Int1
10	3.5	p31	Formulae are written from models or pictorial representations.	Int1
11	3.7	p33	Formulae are written using prefixes, eg 'mono- ', 'di- ', 'tri- ', 'tetra- '.	Int1
N	IB:	Th	ere are no Access 3 level Learning Outcomes in Section	13

Atoms

a) Copy the following into your jotter.

Atoms are the simplest building block of all substances.

There are approximately 100 different types of atoms. These are called <u>elements</u> and are found on the Periodic Table

A **silver** ring contains millions of silver atoms. Each silver atom is the same.

Every atom in an **iron** nail is an atom of iron, and all atoms of iron are the same.

But iron atoms are smaller and lighter than silver atoms.

b) **Copy** and **complete** the following table into your jotter for the first **ten** elements of the Periodic Table and **ten** elements of your own choice.

Element	Atomic Number	E	lement	Atomic number
	1			
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
	10			

a) Copy the following into your jotter.

- Atoms are pure substances.
- Mixtures are when different substances are "mixed" together without chemically joining together.
- A molecule is when 2 or more atoms are joined together.
- The "joins" between molecules are called bonds.
 - Bonds inside molecules are strong to hold molecules together.
 - Bonds between molecules are weak.
- b) Copy the following diagrams into your jotter.

c) Copy and complete the following passage in your jotter using the word bank.

woradarik				
large	strong	less	weak	further

- 1. The bonds holding atoms together <u>inside</u> a molecule are <u>.....</u>
- 2. This is why breaking up molecules requires aamount of energy.
- 3. The bonds between different molecules are
- 4. Melting and boiling makes molecules move apart.
- 5. This is why melting a substance requires energy than breaking up molecules.

a) **Copy** the following into your jotter.

Every substances has a chemical name and a chemical formula.

As well as having its own chemical name, each substance can be represented by a **chemical formula**.

- The chemical formula tells us the number of atoms of each element in a molecule.
- The number of atoms of each element in the molecule is indicated by a number after the symbol for the element,

Examples:

- 1. Chemical formula is $O_2 \rightarrow two$ oxygen atoms in the molecule.
- 2. Chemical formula is $PH_3 \rightarrow one$ phosphorus and three hydrogens

b) Copy and complete the following table in your jotter.

(use page 6 of data booklet to identify elements from their symbol)

Formula	Number of Atoms
CO ₂	1 carbon + 2 oxygen
CH₄	
H₂O	
Al ₂ O ₃	
CaCO ₃	
H₂SO₄	
NH ₃	
N₂O	
HCI	

If there is only one atom of an element in the molecule, then the number '1' is not written in, e.g. the chemical formula CO_2 shows that there is **one** carbon atoms and **two** oxygen atoms in the molecule.

- a) **Collect** a set of molecular models (molymods)
- b) Read the following instructions on the use of molymods

Each colour of molymod represent a type of atom.

- BLACK: a carbon atom
- BLUE: a nitrogen atom
- RED: an oxygen atom
- GREEN a chlorine atom
- WHITE: a hydrogen atom
- c) Join the following combinations together
 - i. Hydrogen and chlorine atoms
 - ii. Hydrogen and oxygen atoms
 - iii. Hydrogen and carbon atoms

- d) Use the molymods to **make** models of the following compounds
 - i. hydrogen oxide
 - ii. nitrogen hydride
 - iii. carbon chloride
 - iv. carbon dioxide
 - v. hydrogen H_2
 - vi. Chlorine Cl_2
 - vii. nitrogen N_2
 - viii. Oxygen O2

- a) **Collect** the question sheet and **stick** it into your jotter.
- b) Work out the chemical formula of the substances shown and write down the chemical formula in the last column of the table.

a) Work out the chemical formula as you did in the previous lesson

Chemical	Diagram	Chemical Formula
Trichloromethane (chloroform)	carbon chlorine hydrogen	
Benzene (carcinogen & causes cancer)	carbon hydrogen	
Aspirin (pain-killer drug)		
Caffeine (found in coffee and red bull)		

a) **Copy** the following passage into your jotter.

Some chemicals have names which give information about the chemical formula. They use prefixes to indicate the number of atoms in the formula.

b) Copy the following table into your jotter.

Prefix	Meaning	Example	Formula
Mono- 1 carbon monoxide		$C_1O_1 \rightarrow CO$	
Di- 2 sulphur di oxide		sulphur di oxide	$S_1O_2 \rightarrow SO_2$
Tri-	3	phosphorus tri hydride	$P_1H_3 \rightarrow PH_3$
Tetra- 4 carbon tetra chloride		$C_1H_4 \rightarrow CH_4$	

c) Copy and complete the following table in your jotter.

Substance	Formula
carbon dioxide	
sulphur trioxide	
nitrogen dioxide	
nitrogen monoxide	
dinitrogen oxide	
dinitrogen tetroxide	
dihydrogen oxide (water)	
phosphorus pentachloride	

Ions

a) Copy the following passage into your jotter.

Some substances are made of ions.

- Ions are charged particles
- There are two different oppositely-charged ions in every substances made of ions.
 - Positive ions (+ve)
 - Negative ions (-ve)
- The bonds between ions are strong
- b) **Collect** the diagram of the ionic compound sodium chloride Na⁺Cl⁻, **stick** it into your jotter and **complete** the diagram by colouring the two different types of ions.

c) Copy and complete the following passage using the word bank.

		nonal	
airraci	strong	repei	

- 1. The bonds between ions are
- 2. A positive and a negative ion each other
- 3. Two positive ions each other
- 4. Two negative ions each other

Bonding Type I: Melting & Boiling Points

a) **Copy** the following passage into your jotter.

The bonds between molecules in substances are <u>weak</u>.

- Weak bonds between molecules are easy to break
- Less heat energy required to break up molecules
- Low melting and boiling point as less energy is required
- <u>Substances made of molecules tend to be gases and liquids</u> at room temperature

The bonds between ions in substances are <u>strong</u>.

- Strong bonds between ions are hard to break
- More heat energy required to break up ions
- High melting point and boiling point as more energy is required
- <u>Substances made of ions are solids</u> at room temperature.

b) Copy the following table into your jotter

Salt	Water	Oxygen	
(sodium chloride NaCl)	(H ₂ O)	(O ₂)	
Na ⁺ Cl ⁺	H ₂ O H ₂ O	0 ₂ 0 ₂ 0 ₂	
Melting Point: 801°C	Melting Point: 0°C	Melting Point: -218°C	
Boiling Point: 1465°C	Boiling Point: 100°C	Boiling Point: -183°C	
Solid at 25°C	Liquid at 25°C	Gas at 25°C	
Substance made of:	Substance made of:	Substance made of:	
Ions	Molecules	Molecules	

- a) **Read** the following two statements to help you complete the rest of this lesson:
 - Substances made of molecules *tend* to be gases and liquids at room temperature
 - Substances made of ions are solids at room temperature.

Substance	Solid, Liquid or Gas	Molecular or Ionic
Salt		
Water		
Oxygen		
Fertiliser	Solid	
Petrol		
Methane		
Epsom salts		
Baking Soda		

b) Copy and complete the following table in your jotter.

However, some molecular substances can be solids e.g. sugar.

c) Copy the following table into your jotter and use you data booklet (page 4) to complete the table.

Substance	Melting Point (°C)	Molecular or Ionic
phenol		
calcium oxide		
naphthalene		
sodium bromide		

Bonding & Conductivity

a) Copy the following passage into your jotter.

The type of bonding in a substance decides whether a substance conducts electricity or not:

- Substances made of molecules do not conduct electricity
- Substances made of ions sometimes conduct depending on which state they are in
 - Solid ionic compounds do <u>not</u> conduct
 - Liquid (i.e. molten) ionic compound conduct electricity
 - Ionic substances in solution conduct electricity

Substance	State	Molecular or Ionic	Conductor or Non-conductor
oxygen	gas	Molecular	
paraffin	liquid	Molecular	
sodium chloride	solid	Ionic	
sodium chloride	solution	Ionic	
Sodium chloride	liquid	Ionic	conductor

b) **Copy** the following table into your jotter.

c) Carry out the following experiment.

- 1. Set up the following electrical circuit.
- 2. Use the crocodile clips to connect up the different materials provided into the electrical circuit.
- 3. If the bulb lights up, record the material as an electrical conductor in your results table.
- 4. If the bulb fails to light up, record the material as an electrical insulator in your results table.

d) Copy and complete the following summary.

• Make sure you only leave the *correct* words in the table

Type of Bonding	Bonds Between molecules/ions	Usual State(s)	Melting/Boiling Point	Conductivity (🗸 or *)		
				Solid	Liquid	solution
Molecular	strong/weak	solid/liquid/gas	high/low	✓ or ×	✓ or ×	✓ or ×
Ionic	strong/weak	solid/liquid/gas	high/low	√ or ×	✓ or ×	✓ or ×

Intermediate 1 Level Revision Questions

NuuurCl

- 1. An ionic compound will conduct electricity as a solid / solution.
- 2. In ionic compounds the ions have the same / opposite charge.
- 3. Molecules are made up of atoms held together by weak / strong bonds.
- 4. Substances made up of molecules have a low melting point because the bonds between the molecules are **weak / strong**.
- 5. The forces between the ions in an ionic compound are weak / strong.
- 6. Which of these substances is made up of ions?
 - A. Water.
 - B. Carbon dioxide.
 - C. copper.
 - D. salt.
- 7. the compound represented by
 - A. Nitrogen monochloride.
 - B. Nitrogen dichloride.
 - C. Nitrogen trichloride.
 - D. Nitrogen tetrachloride.
- 8. Copy and complete the table.

Substance		Electrical conduction		
Substance	Molecular or ionic	Solid	liquid	
Sodium bromide	Ionic		Yes	
Hexane	Molecular	No		
Calcium chloride			yes	

Cl

9. Look at the information in the table below.

Substance	Boiling point (°C)	
CH₄	-164	
C ₂ H ₆	-89	
A	-42	
C4H10	-1	

- a) Predict the formula for compound "A".
- b) Suggest a pattern for how the boiling point changes with the number of carbons.

is called

c) Suggest a value for the boiling point of the compound C_5H_{12} .