

2020 Marking Scheme

Grade Obtained	A	В	С	D	N/A
2020	40.7%	25.5%	22.1%	7.8%	3.9%
2021	43.4%	19.9%	18.2%	10.4%	8.1%

This marking scheme is for the intended Higher Chemistry Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason. Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same. The grades awarded in 2020 and 2021 are in the table above.

	2020) Higher Cl	hemistr	'y Mark	ing Sch	neme	
MC Qu	Answer	Reasoning					
1	A	 A Filtration is the process to separate an insoluble substance from a liquid. B Distillation is the process where chemicals are separated due to different boiling points C Evaporation is the process to separate a substance from the solvent it is dissolved in C Collection over water is the process to collect insoluble gases using a delivery tube 					
2	D	The size of atoms decrea number of protons/increa attraction for the outer s	ses across a peri used nuclear char shell of electrons	od e.g. sodium to ge. The increasec and it moves clos	chlorine due to t 1 nuclear charge ser to the nucleu	he increased has a greater s.	
3	В	 ☑ A CO₂ is non-polar due ☑ B London dispersion for ☑ C No covalent bonds ar ☑ D CO₂ is non-polar due 	$\mathbf{Z}A\ CO_2$ is non-polar due to the spatial arrangement of the atoms within the molecule $\mathbf{Z}B\ London$ dispersion forces are broken as solid CO_2 is changed into gaseous CO_2 $\mathbf{Z}C\ No$ covalent bonds are broken as it is still CO_2 at the end of the change of state $\mathbf{Z}D\ CO_2$ is non-polar due to the spatial arrangement of states are broken as it is still $\mathbf{Z}D\ \mathbf{Z}D\ \mathbf{Z}D\$				
4	A	☑A Elements with high e ☑B Elements with high el ☑C Elements with low ele ☑D Elements with low ele	lectronegativities lectronegativities ectronegativities ectronegativities	s tend to gain ele s tend to reduce s e.g. metals tend t tend to oxidise t	ctrons and are re so are oxidising a to lose electrons hemselves so are	educed igents reducing agents	
5	С	 ☑ A X must be less viscou ☑ B Y must have the stro ☑ C X is less viscous and ` ☑ D X must be less viscous 	us as the metal bo ngest van der Wo Y must have the s us as the metal bo	all is falling throu als forces as the stronger van der all is falling throu	gh it faster ball bearing is t Waals forces gh it faster	ravelling slower	
6	С	1 st ionisation energy $Be(g) \longrightarrow Be^{+}(g) + e^{-} \Delta H = 900 \text{kJ mol}^{-1}$ 2 nd ionisation energy $Be^{+}(g) \longrightarrow Be^{2+}(g) + e^{-} \Delta H = 1757 \text{kJ mol}^{-1}$ total $Be(g) \longrightarrow Be^{2+}(g) + 2e^{-} \Delta H = 2657 \text{kJ mol}^{-1}$					
7	D	EA 2-methylpropanoic acid $C_4H_8O_2$ is not an isomer of pentanoic acid $C_5H_{10}O_2$ EB propyl methanoate $C_4H_8O_2$ is not an isomer of pentanoic acid $C_5H_{10}O_2$ EC 2-ethylbutanoic acid $C_6H_{12}O_2$ is not an isomer of pentanoic acid $C_5H_{10}O_2$ MD ethyl propagate $C_5H_{10}O_2$ is an isomer of pentanoic acid $C_5H_{10}O_2$					
8	В	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$\begin{array}{c} O & H \\ H \\ C - N \\ amide link \end{array}$	
		Alcohol Number	0	0	6	0	
9	В	Type of Alcohol Product of oxidation with acidified potassium dichromate	1 Primary Carboxylic acid	2 Secondary Ketone	1 Tertiary [No Oxidation]	1 Primary Carboxylic Acid	
10	С	acidified potassium dichromate -			jutan-1-ol.		
11	С	 Sog Sog					

		X A proteins are not hydrolysed into amino acids during denaturing
12		MA proteins are not nyar orysed into anino actas daling denararing
	B	E B hydrogen bonds dre broken in the denardring step as the protein changes shape
	-	Lac proteins are not hydrolysed into amino acids during denaturing
		D water is removed in the condensation reaction to turn amino acids into proteins
		Image: A fats are more saturated than oils as oils have more C=C double bonds than fats
12	C	B fats are more saturated than oils as oils have more C=C double bonds than fats
13		$oxtime{ } \mathcal{O} C$ fats are more saturated than oils and have higher melting points than oils
		🗷 D fats have higher melting points than oil as fats are solid at room temperature
		🗷 A antioxidants are easily oxidised themselves so act as electron donors
11	D	B antioxidants are easily oxidised to stop oxidation of food so do not act as oxidising agent
14	В	🗷 C antioxidants are easily oxidised themselves so act as reducing agents
		🗷 D antioxidants act as free radical scavengers and react with free radicals
		🗷 A Termination Step with free radicals before the arrow only
4 -		B Initiation Step with free radicals after the arrow only
15	D	SC Termination Step with free radicals before the arrow only
		VD Propagation Step with free radicals on both sides of the arrow
		A small night in temperature degragged the time and siver a large increase in reaction rate.
		MA small rise in temperature decreases the time and gives a large increase in reaction rate
16	A	B activation Energy does not change with a change in temperature
		ELC Keivin temperature scale must be used to investigate doubling the temperature
		\square D Increase in temperature is decreasing the time for reaction \therefore increasing the rate
17		rate = $\frac{1}{1}$ = $\frac{1}{1}$ = 0.2 s ⁻¹ notative note = 0.20e ⁻¹ eived concentration = 0.96 mol 1 ⁻¹
1/	U	time $5s$ time $5s$ time $5s$
		🗵 A high activation energy barrier too high for the reaction to take place at room temp
10		☑B low activation energy barrier and the reaction more likely to happen at room temp
18	В	🗵 C this enthalpy diagram is endothermic as the products are higher than the reactants
		🗵 D this enthalpy diagram is endothermic as the products are higher than the reactants
		⊠A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants
10	C	$oxtimes$ B 1 volume of gas reactants becomes 1 volume of gas products \therefore not halving of reactants
19	C	$oxtimes$ C 4 volumes of gas reactants becomes 2 volumes of gas products \therefore halving of reactant vol
		$f f ar D$ 1 volume of gas reactants becomes 2 volumes of gas products \therefore not halving of reactants
		If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester
20	D	$CH_3COOH + C_2H_5OH CH_3COOC_2H_5 + H_2O$
	-	1.0mol 1.0mol 1.0mol 1.0mol
-		☑A decrease in temperature increases the yield by more forward reaction and decrease in
		temperature favours the exothermic reaction forward reaction is exothermic
21	A	B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening
		🗷 C The 500°C line is always below the 250°C line so increasing temperature lowers yield
		🗷 D There is increase in product yield when the pressure increased after 200 atmospheres
		n o. of mol H ₂ SO ₄ = volume x concentration = 0.05litres x 0.2mol L ⁻¹ = 0.01mol
22		2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
22	В	
		$0.02 \text{mol} \qquad 0.01 \text{mol}$
		X A P is closer to base line than S · P must be more polar than S
	_	\mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} is further from the base line than \mathbb{R} \mathbb{R} \mathbb{R} must be smaller than \mathbb{R}
23	C	$\square C R$ is closer to base line than $P \therefore R$ must be more polar than P
		\boxtimes D S is closer to base line than Q \therefore S must be larger than Q
		Sample 1 is japared as rough titre 20.3 ± 20.4
24	A	Sample 3 is ignored as beyond 0.2 cm ³ limit for concordance Average = $\frac{20.3 + 20.4}{2}$ = 20.35 cm ³
		Increasing the pressure favours the forward pressure-reducing reaction.
25		Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO ₂ turns into $N_2O_4 \therefore NO_2$ is brown.
25	A	Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO_2 turns into $N_2O_4 \therefore NO_2$ is brown. Increasing the temperature makes mixture darker brown (i.e. more NO_2).
25	A	Increasing the pressure favours the forward pressure-reducing reaction. The mixture becomes paler as NO ₂ turns into N ₂ O ₄ \therefore NO₂ is brown . Increasing the temperature makes mixture darker brown (i.e. more NO ₂). The reverse reaction must be endothermic if it is favoured by an increase in temperature.

2020 Higher Chemistry Marking Scheme Long Reasoning Answer Qu As you go across a period, the electronegativity increases as the electrons within a Increase in atomic bond are more attracted to the nuclei at either end of the bond. The bonded number gives increase 1a(i) electrons are closer to each nucleus as size of atoms decrease as you cross a in electronegativity period They don't form The noble gases in group 0 are unreactive as they already have a full outer shell. **1**a(ii) This means noble gases don't need to form bonds to achieve a full outer shell. covalent bonds bonding electrons screening increases so less attraction of { nucleus protons } outer electrons for shielding shared electrons 1a(iii) One answer from: covalent radius bonding electrons protons atomic size increases so less attraction of outer electrons number of shells shared electrons 1b(i) 2.8 ±0.05 Problem Solving: Selecting information 1b(ii) Cross at (2.1,1.8) Problem Solving: Selecting information Insert charges to each Write down Symbols Cross-Over arrows Work out chemical formula ion and multiple ions and valency below to work out formula (Cancel down if necessary) required brackets Li S S Li $(Li^{+})_{2}S^{2-}$ 1b(iii)A $(Li^{+})_{2}S^{2-}$ Li₂S 1 2 2 1 Due to changes to the Answer 2 З data booklet in 2021, the Elements Carbon Fluorine Sulphur Fluorine Boron Oxygen 1b(iii)B Electronegativity Electronegativity Electronegativity Electronegativity Electronegativity Electronegativity Electronegativity answers to this question = 4.0 = 3.4 = 2.6 no longer come to 1.5 Difference 14 14 The covalent bond in hydrogen fluoride is a polar bond due to the electronegativity Polar (covalent) 1c difference within the bond is 1.8. The polar bond is a permanent dipole and is so polar it takes part in hydrogen bonding between molecules. There are three forms of the element carbon. graphite 2a(i) Carbon in the form of fullerene is a molecular form with formula C_{60} . There are two forms of carbon which are covalent network; diamond and graphite. Diamond is a covalent network so covalent bonds are broken when diamond Covalent bond undergoes sublimation into a gas. 2a(ii) London dispersion forces Fullerene is a non-polar molecule and London dispersion forces are broken when fullerene undergoes sublimation into a gas. $C_{60} + 12Br_2 \longrightarrow C_{60}Br_{24}$ 12 2a(iii) 12mol 1 Br2 molecule will add across each C=C double bond. mass of useful products total mass of reactants x100 = (2x55.8) (1x159.6) + (3x28.0) -x100 = 45.8% 2b458 atom economy = · Ø CO $\frac{1}{2}O_2 \rightarrow CO_2$ ∆H=-283 kJ mol⁻¹ $\frac{1}{2}O_2 \rightarrow H_2O$ 0 H_2 ∆H=-286 kJ mol⁻¹ € $2O_2 \rightarrow CO_2$ + $2H_2O \Delta H$ =-891 kJ mol⁻¹ CH₄ $CO_2 \rightarrow CO$ + $\frac{1}{2}O_2 \Delta H$ =+283 kJ mol⁻¹ **0**x-1 +250 kJ mol⁻¹ 2c $3H_2O \rightarrow 3H_2$ + $1\frac{1}{2}O_2 \Delta H$ =+858 kJ mol⁻¹ **❷**X-3 € CH₄ $2O_2 \rightarrow CO_2$ + $2H_2O \Delta H=-891 \text{ kJ mol}^{-1}$ Add $H_2O \ \rightarrow \ CO \ +$ CH₄ $3H_2 \Delta H=+250 \text{ kJ mol}^{-1}$ + 0'+0+6

		3 mark ans	wer	2 mark	answer	1 mark answer	
3		Demonstrates a <u>good</u> understanding of the cl	nemistry	Demonstrates a <u>r</u> understanding of	<u>easonable</u> the chemistry	Demonstrates a <u>limited</u> understanding of the chemistry	
	Open Question	involved. A good compre	chension of	involved, making s	ome	involved. The candidate has made	•
5	Answer to Include:	the chemistry has prov logically correct, includ	ided in a ing a	the situation, sho	ch are relevant to wing that the	some statement(s) which are relevant to the situation, showing	3
		statement of the princi	ples tion of	problem is unders	tood.	that at least a little of the chemistry within the problem is	
		these to respond to the	e problem.			understood.	
		The bond entha	lpy of n	itrogen is 94	5kJmol ⁻¹ and	l is the highest in date	a
4a	Bond enthalpy is high	booklet. To bec	ome rea	ctive, the N₌	■N triple boi	nd has to be broken	
		before the free	e nitroge	en atoms can	then combin	e with other elements	S .
			nark			2 nd mark	
4b	1 mark for each			and			
10	workable diagram		— potassiu	m		hot copper	
			nydroxic	16		HEAT	
		(potassium hydroxic	le must be	labelled)	(Heated	copper must be labelled)	
			n o. of m	nol Li = <u>mass</u>	$=\frac{0.5}{6.9}=0.0$)725mol	
				grin Alama			
		n o. of moles N	$V_2 = \frac{1}{Mol}$	ar Volume =	24 litres mol	<u>1</u> = 0.0375mol (available)	
1	Mandaina ala amina	6	lia +	$N_{2(a)} =$		21 is N_{co}	
4C(I)	working showing:		Smol	1 N2(9)		2mol	
		0.0	725mol	0.0242mol			
		(required)					
		There is more N2 available (0.0375mol) than is required (0.00242mol) to react all					
		Reduction is the gain of electrony state symbols are not required.		electrone e	n electrone a	unnean before arrow	
4c(ii)	$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$			required.		ppeur before arrow.	
	(ionic)	, Ionic compounds	form io	nic lattices w	ith alternati	na positive and negative	e
4c(iii)	lattice/network	ions in all directions. Ionic lattices are also called ionic networks.					
	atoma/malagulag with	A free radical he	as an unp	paired electro	on which mak	es the free radical	
4d(i)	atoms/molecules with an unpaired electron	reactive as it seeks to pair up its unpaired electron with another species.					
		Free radicals can be formed by exposure to uv light.					
		Bond B	reaking Ste	рs 9456т	B 2xNI-O bonds	ond Forming Steps	
		1x0=0 bond	1x 498kJ =	498kJ	EXIN-O Donds		
		Total bond breaking	=	1443kJ	Total bond Formin	ig = 2X kJ	
4d(ii)	676	$\Delta H = 1$ 91 k.T mol ⁻¹ =	ΣBond entr 1	alpies for bonds b 443 k.T mol ⁻¹	oroken - ΣB -	ond enthalpies for bonds forme 2X	ed
(II)	0,0		-				
		∴ 2X =	14	443 KJ mol ⁻¹ 352 kT mol ⁻¹	-	91 kJ mol⁻¹	
		-	1.				
		∴ X =	é	576 kJ mol ⁻¹			
				Reactants	k	Products	
		516	. Ч	(before Arrow)		(after Arrow)	
		Initia	tion	No free radicals	son	Free radicals on Product Side	
4d(iii)A	termination	Drance	ation	Erec Dedica	e found on both	sides of arrow	
		riopag	anon				
		Termin	ation	Free radicals (Reactant Side	on e	No tree radicals on Product Side	
			I				

4d(iii)B	one diagram from:	H-0-N=0 or 0-0 H-N	
4e (i)	Answer to include:	1st Markdecreasing temperature favours exothermic reaction or increasing temperature favours endothermic reaction2 nd MarkIncreases the yield of ammonia	
4e(ii)A	Equation showing:	$C_3H_5N_3O_9 \longrightarrow 3CO_2 + 2\frac{1}{2}H_2O + 1\frac{1}{2}N_2 + \frac{1}{4}O_2$	
4e(ii)B	One answer from:	the shock/bump provides the activation energy/EAthe shock/bump provides sufficient/enough energy to start the reactionthe reaction has a low activation energy/EA	
5α	One answer from:	Contains oxygen to ensureSample is surrounded by water so all energy transferred/reduceSealed container prevents/reducesStirring to ensure ensure accurate temperature (measurement)	
5b(i)	-34 078	Heat Energy = Specific Heat Capacity X Mass X Change In Temperature $ \begin{array}{rcllllllllllllllllllllllllllllllllllll$	
5b(ii)	0.7125	$\begin{array}{cccc} C_{57}H_{104}O_6 + 80 O_2 & \longrightarrow & 57CO_2 + 52H_2O \\ & & & & & & & \\ 80 \text{mol} & & & & 57 \text{mol} \\ \text{Because 1 mole of a gas has the same volume at same conditions of temperature and pressure:} \\ & & & & & & \\ 80 \text{vol} & & & & 57 \text{vol} \\ \text{Respiratory Quotient} = & & & \\ \hline & & & & \\ \hline & & & & \\ O_2 \text{ consumed} & = & & \\ \hline & & & & \\ \hline & & & & \\ 80 \text{vol} & = & 0.7125 \end{array}$	
5c(i)	23.3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
5c(ii)	Glycerol has 3 hydroxyl groups	Glycerol has three hydroxyl -OH groups.HHHEach hydroxyl group reacts with a fatty $H - C - C - C - H$ acid any condensation reaction where a OH OH water molecule is removed.glycerol	
6a	1st Mark (for mass)2nd Mark (for units)0.00113kg1.13g1130mg	0.133g iodine obtained from 1000g seaweed 0.15mg iodine = 0.00015g iodine 0.00015g iodine obtained from 1000g × ^{0.00015g} / _{0.13} = 1.13g seaweed	

6b(i)	Answer to include:	Measuring the mass of container + seaweed/sample then subtract the mass of the container				
6b(ii)	I ⁻ ions or Iodide ions	Reducing agents reduce another species while being oxidised themselves (losing electrons in the process) $H_2O_2 + 2I^- + 2H^+ \longrightarrow 2H_2O + I_2$ $2I^- \qquad \qquad$				
6b(iii)	Answer to include:	A solution of accurately/exactly/precisely known concentration				
6b(iv)A	0.00013	$I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$ $I_{mol.} \qquad 2mol$ $0.00013mol \qquad 0.00026mol$				
6b(iv)B	0.033	gfm I ₂ = (2x126.9) = 253.8g mass = no. of mol x gfm = 0.00013 x 253.8 = 0.03299g				
6c(i)	Amino acid that must be acquired/obtained from the diet	Essential amino acids must be obtained from the diet if they are going to be joined together to form all the different proteins needed in the body.				
6c(ii)	One from:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
7α	2 marks awarded top half (1 mark) bottom half (1 mark)	1 mark for: sulfur dixide + oxygen reactor with catalyst sulfur trioxide 1 mark for: concentrated sulfur cation sulfur cation ulfur				
7b	Requires heat to be removed	Highly exothermic reactions need the excess heat energy removed safely from the reaction system. Excess heat could lead to the evaporation of liquid reactants/products and the resultant large increase in gas pressure could lead to an explosion.				
7c(i)	Answer to include:	1st description of LDFs as forces of attraction between temporary dipoles (and mark induced dipoles) 2nd explanation of the cause of temporary dipoles in terms of uneven distribution mark of electrons/electron wobble/movement of electrons in the molecule				

	1 st Mark		London disper	sion forces are form	ed when a temporary c	linole is
	Sulphur has more		formed This is the result of an temporary imbalance of electrons on			
	electrons than assess		formed. This is the result of an temporary imparance of electrons of $\frac{1}{2}$			
7c(ii)	2 nd Mank		The expected number of electrons in the stem the expected the			
			The greater number of electrons in the atom, the greater the			
	forces are	e stronger	This temperature dinale induces usight evening.			
	due to sulphur		This temporary	/ alpole induces neigr	bouring atoms to forn	n a alpole.
	structure	e being S8	The dipoles be	tween atoms are attr	racted to each other a	nd this leads
	whereas o	xygen is O2	to the atoms being closer together and this increases the boiling			e boiling point.
	Effect of	Effect of	A catalyst lowe	ers the activation ene	ergy by providing an al	ternative
	catalyst on enthalpy change	catalyst on activation energy	route to the pr	oducts. The activation	on energy is the minim	um energy
74		57	required for ar	n activated complex t	o be formed and the r	new
70	atoutho como		substance(s) fo	ormed.		
	stay the same		A catalyst has	no effect on the ent	halpy change for a rea	action as the
		decrease	energy of the r	reactants and produc	ts are not changed by	the catalyst.
			Scum is formed	as a precipitate betw	veen ions in hard water	(usually Ca ²⁺
	D -		ions) and the ne	gative ion found in so	aps/detergents. Soft w	ater lacks Ca ²⁺
7e(i)	Do	not	ions so no preci	pitate/scum is formed	when soap is used with	n soft water.
	form	scum	Soapless deter	pents are designed to	not form a precipitate	with Ca ²⁺ and
			no precipitate/s	scum formed with har	d or soft water.	
			One word from	below to describe the	One word from below t	o describe the
				HFAD	TATI	
					Liudnanha	hia
7e (ii)	Answer to include:		Hydrophinc		Hydrophobic	
			Polar		INON-polar	
			Lonic		Non-polar	
			Water soluble		Fat solub	le
			н	0 Н	ннн	Н
			i i		Î Î Î	1
	pentyl ethanoate		н—с-	-c - 0 - c - 1	- <u> </u>	С—п
8a(i)			Н	H	ННН	Н
00(1)			L	,/ L		J
			carboxyli	r acid side	alcohol side	
			Second Na	me of Ester	First Name of Ester	7
			Second INd			
			-etha	noate	pentyl-	
					• •	
				A condensation rea	ction happens when t	wo molecules
				join together and a	small molecule (usual	lly water) is
			Condensation	removed where the	y joined. Condensatic	on reactions
0 (1)	Conder	nsation		where an ester is f	ormed are also knowr	n as
8a(ii)	or ester	ification		esterification reac	tions.	
				A hydrolysis reacti	on happens when a ma	plecule splits
			Hydrolysis	into two molecules	and a small molecule (usually
				water) is added acr	uss the break naint	
			Although contain	diavida is saluble it is a	by anoningly aglights in met	on The mainst
	Carbon c	lioxide is	of carbon diaxide	uiuxiue is soludie it is or does not discolue in the	ny sparingly soluble in wat water as it makes its wo	er. The majority
8h(i)	(relatively) insoluble		water to the upside down measuring cylinder filled with water			
55(1)	C)r	NO2 and NH3 are	much more soluble in wa	ther than CO_2	
	has very low solubility		Best way to collect any gas which is soluble is in a gas syringe			

		n o. of moles $CO_2 = \frac{\text{Volume}}{\text{Molar Volume}} = \frac{0.055 \text{ litres}}{24 \text{ litres mol}^{-1}} = 0.00229 \text{ mol}$						
		$C_{4}H_{9}O_{7} + 3N_{9}H_{7}O_{2} \longrightarrow 3CO_{2} + 3H_{2}O_{7} + C_{4}H_{5}O_{7}N_{9}O_{2}$						
01.40	0.000	1mol 3mol						
8b(ii)	0.029	0.000764mol 0.00229mol						
		gfm citric acid = 192g						
		mass citric acid in 5 sweets = no. of mol x gfm = 0.000764 x 192 = 0.147g						
		mass citric acid in 1 sweet = ^{0.14/g} / ₅ = 0.0293g						
8c(i)A	orange to green	Oxidising Colour Primary alcohol Secondary Alcohol Aldehyde						
		Hot copper(II) oxide Brown to black \checkmark \checkmark \checkmark						
0 (0)	Tollens' reagent or	Acidified dichromate Orange to green \checkmark \checkmark \checkmark						
8c(i)B	Fehling's solution	Fending's solution Blue to brick red X V Tollen's Reagent Silver mirror X V						
8c(ii)	2	$\begin{array}{c} \text{Formula of Isoprene = } C_5 H_8 \\ \text{2 isoprene units join together} \end{array}$						
		Formula of limonene = $C_{10}H_{16}$ to form limonene						
		100cm ³ solution contains 0.184g vanillin						
		5 cm ³ solution contains $0.184g \times \frac{5}{100} = 0.0092g$ vanillin						
	1 pence	1000g vanillin costs £.1050.00						
8c(iii)	or	$0.0092g$ vanillin costs £1050.00 x $^{0.0092}/_{1000}$						
	£0·01	= £0.00966						
		= 0.966p						
		≈ 1p						
		100cm ³ mouthwash contains 1.5g of 35% hydrogen peroxide solution						
9a(i)	1.575	300cm ³ mouthwash contains 4.5g of 35% hydrogen peroxide solution						
		35% of 4.5g = $\frac{35}{100}$ x4.5g = 1.575g						
		IUU -						
90(11)	Duratain(a)	proteins are polymers made by the condensation polymerisation of amino acids. Enzymes are biological catalysts which are specially shaped						
20(11)	Trorem(3)	proteins and catalyse chemical reactions at body temperatures.						
0.000	· · · · · · · · ·	Pipettes and burette are more accurate methods of measuring						
9a(iii)	pipette and burette	volumes of liquids than measuring cylinders and beakers.						
		Essential oils are concentrated extracts of the volatile, non-water soluble						
9b	essential oils	aroma compounds from plants. They are mixtures of many different						
		compounds. They are widely used in perfumes, cosmetic products, cleaning						
		LL-C						
		H ₂ C						
9c(i)	2-methylbuta-1,3-diene	C-CH						
		H_3C^2 CH_2						
		2-methylbuta-1,3-diene						
		Menthol is a secondary alcohol as its hydroxyl -OH group has two						
9c(ii)	ketone	carbons attached to the carbon with the -OH group.						
2 - ()		Secondary alcohols oxidise to ketones.						

9d(i)	methanol	salicylic acid + X $C_7H_6O_3$ + $C_xH_yO_z$ For C: 7+x = 8+0 \therefore x = 8+0-7 = 1 For H: 6+y = 8+2 \therefore y = 8+2-6 = 4 For O: 32 = 23:1 3 = 1 Mathematical basis formula Cit 4 O		
9d(ii)	79·24	For 0: $3+2 = 3+1 \therefore z = 3+1 - 3 = 1$ Methanol has formula CH4Ogfm salicylic acid = 138gno. of mol = $\frac{mass}{gfm} = \frac{28.3}{138} = 0.205 mol$ salicylic acid + methanol(X)methyl salicylate + water1mol0.205 mol0.205 mol0.205 mol (theoretical)gfm methyl salicylate = 152gno. of mol = $\frac{mass}{gfm} = \frac{24.7}{152} = 0.163 mol (actual)$		
9d(iii)	6.5	$\frac{\text{Actual}}{\text{Theoretical}} \times 100 = \frac{0.163 \text{mol}}{0.205 \text{mol}} \times 100 = 79.24\%$ 1kg body mass has toxicity at 0.14g methyl salicylate 65kg body mass has toxicity at 0.14g $\times^{65}/_1 = 9.1g$ methyl salicylate 7.0g methyl salicylate found in 5.0cm ³ oil of wintergreen 9.1g methyl salicylate found in 5.0cm ³ $\times \frac{9.1}{7.0}$ = 6.5cm ³ oil of wintergreen		
10	Open Question Answer to Include:	3 mark answer 2 mark answer 1 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		
11a(i)	Reactants/solvent is flammable/catches fire with a flame	The reactants and the solvent are often flammable in reflux so an open flame could cause any escaping vapours to catch fire. A water bath solves this issue, If a temperature above 100°C is required then a heating mantle should be used instead.		
11a(ii)	condenser	The condenser is fitted to the flask to give a cold surface for the vapours escaping the flask to condense back to liquids and return to then flask. In reflux techniques the water should enter the condenser at the bottom and leave at the top of the condenser		
11b(i)	addition	The CH ₃ CH ₂ MgBr molecule is added across the C=O carbonyl group of ethanal. $\begin{array}{c} H \\ H \\$		
11b(ii)	2-methylbutan-2-ol	H H CH ₃ 2-methylbutan-2-ol methyl-CH ₃ 4 carbons on Hydroxyl-OH methyl-CH ₃ 4 carbons on Hydroxyl-OH methyl-CH ₃ 4 carbons on C ₂		

