

## Past Papers Higher Chemistry

## 2022 Marking Scheme

| Grade    | Mark Required       |        | % condidates cabinaina anada |
|----------|---------------------|--------|------------------------------|
| Awarded  | (/ <sub>120</sub> ) | %      | % candidates achieving grade |
| Α        | 84+                 | 70.0%  | 34.9%                        |
| В        | 68+                 | 56.7%  | 24.1%                        |
| С        | 53+                 | 44.2%  | 19.3%                        |
| D        | 37+                 | 30.1%  | 12.9%                        |
| No award | <b>&lt;37</b>       | <30.1% | 8.8%                         |

| Section:      | Multiple Choice |     | Extended Answer |     | Assignment            |
|---------------|-----------------|-----|-----------------|-----|-----------------------|
| Average Mark: | 16.4            | /25 | 55.1            | /95 | No Assignment in 2022 |

|       | 2022 Higher Chemistry Marking Scheme |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|-------|--------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| MC Qu | Answer                               | %<br>Correct | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 1     | D                                    | 74           | ☑A Boron is a covalent network due to its high melting point ☑B Neon is monatomic in Group O due to its full pouter shell ☑C Sodium is a metal and contains metallic bonding ☑D Sulphur has a covalent S <sub>8</sub> structure and has LdF between molecules                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 2     | A                                    | 67           | ☑A Forming a 2+ ion creates a full outer shell and a low 2 <sup>nd</sup> ionisation energy  ☑B Forming a 3+ ion creates a full outer shell and a low 3 <sup>rd</sup> ionisation energy  ☑C ionisation energy removes electrons and forms positive ions  ☑D ionisation energy removes electrons and forms positive ions                                                                                                                                                                                    |  |  |  |  |  |  |
| 3     | С                                    | 48           | <ul> <li>☑A Intermolecular forces decide the boiling point not the covalent bonds inside</li> <li>☑B Intermolecular forces decide the boiling point not the covalent bonds inside</li> <li>☑C Permanent dipole to permanent dipole attractions between polar covalent HCl molecules are stronger than London dispersion forces between H₂ molecules</li> <li>☑D Van der Waals' forces are never stronger than covalent bonds</li> </ul>                                                                   |  |  |  |  |  |  |
| 4     | В                                    | 63           | Agent         Reducing Agent         Oxidising Agent           Action of Agent on Another Species         reduces another species         oxidises another species           Action on Agent Itself         agent is oxidised         agent is reduced           Effect on Electrons in Agent         loss of electrons         gain of electrons           Likely Electronegativity of Agent         low         high           Position in Electrochemical series         top right         bottom Left |  |  |  |  |  |  |
| 5     | D                                    | 45           | Redox: $Cr_2O_7^{2^-} + 14H^+ + 6Fe^{2^+} \longrightarrow 2Cr^{3^+} + 7H_2O + 6Fe^{3^+}$ Oxidation: $6Fe^{2^+} \longrightarrow 6e^- + 6Fe^{3^+}$ Reduction: $Cr_2O_7^{2^-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3^+} + 7H_2O$                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 6     | Α                                    | 49           | Formula: $MgBr_2$ $MgSO_4$ Mole ratio: $1 mol : 2 mol$ $1 mol : 1 mol$ 4 mol $Br^-$ ions $2 mol$ $4 mol$ 3 mol $Mg^{2+}$ ions $2 mol$ $1 mol$ 1 mol $1 mol$ $1 mol$ $1 mol$                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 7     | D                                    | 84           | Ester Link  H H H H O  H—C—C—C—C—C H H H  H H H H O—C—C—C—H  H H H H   C <sub>5</sub> carboxyl side  C <sub>3</sub> alcohol side  :: Ends in Pentanoate :: Starts with Propyl                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 8     | С                                    | 52           | Structure shown A octan-4-one has formula $C_8H_{16}O$ has formula $C_8H_{16}O$ $C_8H_{16}O$ $C_8H_{16}O$ $C_8H_{16}O$ $C_8H_{16}O$ $C_8H_{16}O$ $C_8H_{16}O$                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 9     | Α                                    | 82           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

| 10 | С | 73 | <ul> <li>☑A C=C double bond in prenol molecule would decolourise bromine solution quickly</li> <li>☑B C=C double bond in prenol molecule would decolourise bromine solution quickly</li> <li>☑C Prenol would decolourise bromine solution and react with hot copper (II) oxide</li> <li>☑D Prenol is a primary alcohol and would react with hot copper (II) oxide</li> </ul>                                                                                                                                                                                                          |  |  |  |  |  |  |
|----|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 11 | В | 48 | Palm oil has iodine number of 48 ∴ 48g of Iodine reacts with 100g of palm oil  Olive oil has iodine number of 84 ∴ 84g of Iodine reacts with 100g of olive oil  • palm oil must contain less C=C double bonds than olive oil as less iodine is required by palm oil to saturate the molecules completely.  • palm oil must be more saturated than olive oil if it contains less C=C bonds  • more saturated palm oil molecules fit together better would meaning palm oil molecules are closer together and raises melting point of palm oil.                                         |  |  |  |  |  |  |
| 12 | В | 86 | <ul> <li>☒A head section is polar making it hydrophilic.</li> <li>☒B hydrophilic head dissolves in water and hydrophobic tail dissolves in oil</li> <li>☒C head section is polar would dissolve in water making it hydrophilic.</li> <li>☒D head section is polar would dissolve in water.</li> </ul>                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 13 | D | 87 | 2-methylbutan-1-ol 2-methylbutan-2-ol butan-1-ol butan-2-ol  HH-CHH H-C-C-C-C-OH H H H-C-H H H-C-C-C-C-C-H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 14 | С | 77 | A B C D  cucumber flavour vanilla flavour ginger flavour Orange flavour  OH  H  CH  CH  CH  CH  CH  CH  H  CC  CH  H                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 15 | В | 76 | <ul> <li>☑A Carbonyl group would be numbered C₂ to give functional group lowest numbering system</li> <li>☑B Secondary alcohol 4-methylpentan2-ol oxidises to form the ketone 4-methylpentan-2-one</li> <li>☑C Molecule is secondary alcohol and would oxidise to form a ketone not aldehyde</li> <li>☑D Molecule is secondary alcohol and would oxidise to form a ketone not aldehyde</li> </ul>                                                                                                                                                                                     |  |  |  |  |  |  |
| 16 | С | 54 | <ul> <li>☑ A the bottom of the meniscus should be used to measure the volumes in a burette</li> <li>☑ B rinsing the burette with deionised water will result in the dilution of the next solution in burette</li> <li>☑ C small volume of the reactant in the burette should be used to rinse the burette before use, the bottom of the meniscus should be used to measure volumes and draining a small volume of acid will remove any air bubble below the tap in the burette.</li> <li>☑ D the bottom of the meniscus should be used to measure the volumes in a burette</li> </ul> |  |  |  |  |  |  |
| 17 | В | 58 | <ul> <li>☑A polar ethanol would not be a solvent to dissolve non-polar lycopene &amp; beta-carotene</li> <li>☑B pentane is non-polar and would be a good solvent for non-polar lycopene &amp; beta-carotene</li> <li>☑C polar propanoic acid would not be a solvent to dissolve non-polar lycopene &amp; beta-carotene</li> <li>☑D polar water would not be a solvent to dissolve non-polar lycopene &amp; beta-carotene</li> </ul>                                                                                                                                                   |  |  |  |  |  |  |
| 18 | D | 86 | $rate = \frac{1}{time} = \frac{1}{0.004} = 250s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 19 | Α | 63 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

|    | _                                                                                                        |    | ■ A No effect as neither Na <sup>+</sup> or Cl <sup>-</sup> ions is a reactant or product and don't react with a reactant/product  ■ B H <sup>+</sup> ions in HClass increases concentration of a product requilibrium shifts to left                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 20 | C                                                                                                        |    | ☑B H <sup>+</sup> ions in HCl <sub>(aq)</sub> increases concentration of a product ∴equilibrium shifts to left ☑C OH <sup>-</sup> ions in NaOH <sub>(aq)</sub> neutralises H <sup>+</sup> in products ∴equilibrium shifts to right to replace H <sup>+</sup> ions                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|    |                                                                                                          |    | ☑D CH3COO ions in CH3COONa(aq) increases concentration of product :: equilibrium shifts to left                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|    |                                                                                                          |    | Quantity Measured A B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |                                                                                                          |    | Enthalpy of Reactants (kJ mol <sup>-1</sup> )  Where R starts on y-axis  30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 21 | D                                                                                                        | 75 | Activation Energy Difference between R $^{80-30}$ $^{110-30}$ $^{110-30}$ $^{140-30}$ of Forward Reaction (kJ mol <sup>-1</sup> ) and top of hill $^{80-30}$ $^{80-30}$ $^{10-30}$ $^{10-30}$ $^{10-30}$ $^{10-30}$ $^{10-30}$                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |                                                                                                          |    | Activation Energy Difference between P $^{80-40}$ $^{110-40}$ $^{110-70}$ $^{140-70}$ of Reverse Reaction (kJ mol <sup>-1</sup> ) and top of hill $= 40$ $= 70$ $= 40$                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 22 | В                                                                                                        | 78 | $\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$ $\Delta H_4 = \Delta H_1 - \Delta H_2 - \Delta H_3$ $\Delta H_4 = -210 - (-50) - (-86)$ $\Delta H_4 = -74 \text{kJ mol}^{-1}$ But $\Delta H$ for Z to Y = +74 kJ mol $^{-1}$ $\Delta H_3 = -86 \text{kJ mol}^{-1}$ $\Delta H_3 = -86 \text{kJ mol}^{-1}$                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 23 | Α                                                                                                        | 62 | 50cm <sup>3</sup> diluted in a 250cm <sup>3</sup> standard/volumetric flask gives 1 in 5 dilution.  0.100mol l <sup>-1</sup> given 1 in 5 dilution results in solution becoming 0.02mol l <sup>-1</sup> (or 2.0×10 <sup>-2</sup> mol l <sup>-1</sup> )                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 24 | В                                                                                                        | 48 | 0.100mol $C^{-1}$ given 1 in 5 dilution results in solution becoming 0.02mol $C^{-1}$ (or $2.0 \times 10^{-2}$ mol $C^{-1}$ ) $\blacksquare$ A gfm AgF = $107.9 \therefore n = \frac{m}{gfm} = \frac{2.868}{107.9} = 0.0266$ mol $\blacksquare$ B gfm AgCl = $143.4 \therefore n = \frac{m}{gfm} = \frac{2.868}{143.4} = 0.0200$ mol $\blacksquare$ C gfm AgBr = $187.8 \therefore n = \frac{m}{gfm} = \frac{2.868}{187.8} = 0.0153$ mol $\blacksquare$ D gfm AgI = $234.8 \therefore n = \frac{m}{gfm} = \frac{2.868}{234.8} = 0.0122$ mol |  |  |  |  |  |  |  |
| 25 | ✓ A 10cm³ of water is better measured in a measuring cylinder and titration carried out in conical flask |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |

| 2022 Higher Chemistry Marking Scheme |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| Long Qu                              | Answer                                                                  | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                 |  |  |  |
| <b>1</b> a(i)                        | one answer from:                                                        | atoms/nuclei have the same electronegativity/ Bonding electrons same attraction for the bonding electronegativity values given bonding electrons the atoms).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                 |  |  |  |
| <b>1</b> a(ii)                       | greater<br>nuclear charge                                               | Across a period, the number of protons increases giving a greater nuclear charge. The greater nuclear charge pulls the outer electron shell further which reduces the size of the atom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                 |  |  |  |
| 1b(i)                                | Answer to include:                                                      | The energy required to remove atoms in the gaseous state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 mole of electrons fr                                                                                          | rom one mole of |  |  |  |
| 1b(ii)                               | One answer from:                                                        | covalent radius increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | increased screening/shieldin<br>tion of $\left\{ egin{array}{ll} nucleus \\ protons \end{array}  ight\}$ for ou |                 |  |  |  |
| 1c(i)                                | Answer to include:                                                      | Hydrogen bonding (1 mark)  1 mark for either:  Hydrogen bonding occurs between hydrogen bonded to N, O or F (all 3 elements needed)  The attraction between $\delta$ + end on a permanent dipole is strongly attracted to the $\delta$ - end of a neighbouring permanent dipole in molecules with hydrogen and a atom with high electronegativity                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                 |  |  |  |
| 1c(ii)                               | Answer to include:                                                      | 1 <sup>st</sup> Mark: London dispersion forces become stronger (moving from HCl to HI) 2 <sup>nd</sup> Mark: Number of electrons increases (moving from HCl to HI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                 |  |  |  |
| 2a                                   | 3KClO <sub>4</sub> + 8Al<br>↓<br>3KCl + 4Al <sub>2</sub> O <sub>3</sub> | 3KClO <sub>4</sub> + 8Al → 3KCl + 4Al <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                 |  |  |  |
| 2b(i)                                | 1,35                                                                    | gfm KClO <sub>4</sub> = 122.6g  no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{4.6}{122.6} = 0.0375 \text{mol}$ $2 \text{KIClO}_3 \longrightarrow 3 \text{O}_2 + 2 \text{KCl}$ $2 \text{mol} \qquad 3 \text{mol}$ $0.0375 \text{mol} \qquad 0.0563 \text{mol}$ $0.0563 \text{mol} \times 24 \text{litres mol}^{-1} = 1.35 \text{litres}$ Volume = no. of mol × Molar Volume = 0.0563 mol × 24 \text{litres mol}^{-1} = 1.35 \text{litres}                                                                                                                                                                                                                |                                                                                                                 |                 |  |  |  |
| 2b(ii)                               | no effect                                                               | Catalysts speed up chemical rec<br>chemical reaction. The enthalpy<br>the non-catalysed route due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | change is the same fo                                                                                           | •               |  |  |  |
| 2b(iii)                              | 2595.6                                                                  | 5.5g 103kJ<br>1mol = 138.6g 103kJ × 138.6/ <sub>5.5</sub><br>= 2595.6kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                 |  |  |  |
| 2b(iv)                               | Answer to include:                                                      | Increases the number of particles  1st Mark:  1st Mark:  1st Mark:  1st Mark:  2nd Mark:  Nore successful collisions  Increases the number of particles with energy 2 equal to or greater or with (sufficient) energy to form an activated complex/to react                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                 |  |  |  |
| 2c                                   | Sodium                                                                  | Peak B at 590nm. Sodium gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a flame colour at 589r                                                                                          | nm.             |  |  |  |
| 3                                    | Open Question<br>Answer to Include:                                     | 3 mark answer  Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.  3 mark answer  Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.  1 mark answer  Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the problem is understood. |                                                                                                                 |                 |  |  |  |

| 4a(i)           | Ester link                                                                                                   | —O—H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O<br>  <br>- C - OH                                                                                                                                                                                                                                                          | O<br>  <br>-C-O-                                                                                                       | O   C   C   C   C   C   C   C   C   C |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| 4a(ii)          | Diagram showing:                                                                                             | H-C-C-C-C-C-C-C-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |                                                                                                                        |                                       |  |  |
| <b>4a</b> (iii) | Structure of<br>Heptan-1-ol<br>or other<br>C7 alcohol listed:                                                | ester with butanoic ac<br>hydrolysis must have s<br>heptan-1-ol<br>2-methylhexan-2-ol<br>2-methylhexan-3-ol<br>2-methylhexan-3-ol<br>2,2-dimethylpentan-1-ol<br>3,4-dimethylpentan-2-ol<br>2,3-dimethylpentan-3-ol<br>2,3,3-trimethylbutan-2-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | total of 11 carbons. For id being released during even carbons. There are heptan-2-ol 3-methylhexan-2-ol 3-methylhexan-3-ol 2,3-dimethylpentan-1-ol 4,4-dimethylpentan-2-ol 2,4-dimethylpentan-3-ol 3-ethylpentan-1-ol 2-ethyl-3-methylbutan-1-ol 2-ethyl-3-methylbutan-1-ol | g hydrolysis, the alcoho                                                                                               | l released by this                    |  |  |
| 4b(i)           | 35-45                                                                                                        | TriglycerideGlyceryl trilinoleateGlyceryl tricaprateDifferenceNumber of Carbons57 carbons33 carbons24 carbonsAbsorbance Units19.316.13.23.2 difference in absorbance units = 24 carbonsGlyceryl trilaurate = 17.5 absorbance units (1.4 units above Glyceryl tricaprate)1.4 difference in absorbance units = $24 \times \frac{1.4}{3.2} = 10.5$ carbons∴ Estimate of number of carbons in glyceryl trilaurate = $24 + 11 = 35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                                        |                                       |  |  |
| 4b(ii)          | glyceryl trilinoleate                                                                                        | The lower the melting point, the higher the number of C=C double bonds in molecule.  Oil molecules do not fit as close together due to the change of direction in the carbon chain after a C=C double bond. The further apart the molecules are, the lower the melting point as less energy is needed to separate the molecules into a liquid as there are weaker van der Waals' between oil molecules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |                                                                                                                        |                                       |  |  |
| 4c(i)           | by react with glycerol                                                                                       | Fatty acids from edible oils <u>react</u> with glycerol by condensation reaction. One or two fatty acids react with glycerol to form an emulsifier. This will leave at least one polar -OH group on the glycerol part of the molecule needed to form the hydrophilic head on the emulsifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |                                                                                                                        |                                       |  |  |
| 4c(ii)          | Answer to include:                                                                                           | 1st Mark: Correctly identifying that the 2 emulsifier has two parts with different polarities or two parts that are hydrophobic/hydrophilic.  2nd Mark: Hydrophobic part hydrocarbon chain fatty acid chain non-polar liquids  1st Mark: Correctly identifying that the 2 emulsifier has two parts with different polarities or two parts that are hydrophobic/hydrophilic.  1st Mark: Correctly identifying that the 2 emulsifier has two parts with different polarities or two parts with different polarities or two parts with different hydrophobic/hydrophilic.  1st Mark: Correctly identifying that the 2 emulsifier has two parts with different polarities or two parts that are hydrophobic/hydrophilic.  1st Mark: Different polarities or two parts that are hydrophobic/hydrophilic.  1st Mark: Hydrophobic part hydro |                                                                                                                                                                                                                                                                              |                                                                                                                        |                                       |  |  |
| 5a              | 3-methylbutan-1-ol                                                                                           | HH-C-HH I<br>H—C—C—C—C<br>H H H I<br>3-methylbutan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C—OH                                                                                                                                                                                                                                                                         | nethyl -CH3 four                                                                                                       | carbons on ain chain OH group on C1   |  |  |
| 5b(i)           | C <sub>3</sub> H <sub>7</sub> OH<br>↓<br>C <sub>3</sub> H <sub>6</sub> O + 2H <sup>+</sup> + 2e <sup>-</sup> | C <sub>3</sub> H <sub>7</sub> OH <u>Step 2</u> : Balance all o  C <sub>3</sub> H <sub>7</sub> OH <u>Step 3</u> : Balance O o  C <sub>3</sub> H <sub>7</sub> OH <u>Step 4</u> : Balance H o  C <sub>3</sub> H <sub>7</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | atoms other than $O$ or I<br>$\longrightarrow$ Itoms by adding $H_2O$ to $\longrightarrow$ Itoms by adding $H^*$ to th $\longrightarrow$ Irge by adding electrons                                                                                                            | $C_3H_6O$ H (no change in this exc<br>$C_3H_6O$ the other side (no chan<br>$C_3H_6O$ ne other side<br>$C_3H_6O + 2H^+$ | nge in this example)                  |  |  |

| 5h         | To provide H <sup>+</sup> ions | H <sup>+</sup> ions are a reactant on the left hand side of the equation. If the reactants are not acidified than one of the reactants will be absent and                                                                 |  |  |  |  |  |  |
|------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 5b(ii)     | To provide Fi Tons             | the chemical reaction will not proceed.                                                                                                                                                                                   |  |  |  |  |  |  |
|            |                                | Oxidising Agent Start Colour End Colour                                                                                                                                                                                   |  |  |  |  |  |  |
| <b>5</b> 1 |                                | Acidified Dichromate Orange Green                                                                                                                                                                                         |  |  |  |  |  |  |
| 5b(iii)    | orange $\rightarrow$ green     | Fehling's Solution Blue Brick Red (orange)  Hot copper (II) oxide Black Brown                                                                                                                                             |  |  |  |  |  |  |
|            |                                | Tollen's Reagent (Colourless) Silver mirror produced                                                                                                                                                                      |  |  |  |  |  |  |
|            |                                | Oxidising Agent Reactant(s) Product(s)                                                                                                                                                                                    |  |  |  |  |  |  |
| <b>5</b> 1 | T II 7. 6                      | Acidified Dichromate $Cr_2Or^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ Fehling's Solution $Cu^{2+} + e^- \rightarrow Cu^{4-}$                                                                                     |  |  |  |  |  |  |
| 5b(iv)     | Tollen's Reagent               | Fehling's Solution $Cu^{2+} + e^{-} \rightarrow Cu^{+}$ Hot copper (II) oxide $Cu^{2+} + 2e^{-} \rightarrow Cu$                                                                                                           |  |  |  |  |  |  |
|            |                                | Tollen's Reagent $Ag^+ + e^- \rightarrow Ag$                                                                                                                                                                              |  |  |  |  |  |  |
|            | tertiary alcohols              | Primary alcohol   Aldehyde   Carboxylic acid                                                                                                                                                                              |  |  |  |  |  |  |
| 5b(v)      | •                              | Oxidation of Alcohols  Secondary alcohol   Ketone   Ketone   X   [No oxidation]                                                                                                                                           |  |  |  |  |  |  |
| . ,        | (do not oxidise)               | Tertiary alcohol — X → [No oxidation]                                                                                                                                                                                     |  |  |  |  |  |  |
| 5h( )      | 1:10                           | Chemical Formula No. of O No. of H Oxygen: Hydrogen ratio butan-1-ol C <sub>4</sub> H <sub>9</sub> OH 1 10 1:10                                                                                                           |  |  |  |  |  |  |
| 5b(vi)     | 1:8                            | butanal C <sub>4</sub> H <sub>8</sub> O 1 8 1:8                                                                                                                                                                           |  |  |  |  |  |  |
|            |                                | An enzyme is a specially-shaped protein which acts as a biological                                                                                                                                                        |  |  |  |  |  |  |
| 6a(i)      | biological catalyst            | catalyst, catalysing chemical reactions in the body at 37°C.                                                                                                                                                              |  |  |  |  |  |  |
|            |                                | н он он                                                                                                                                                                                                                   |  |  |  |  |  |  |
|            | one peptide link               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |  |  |  |  |  |  |
|            | circled:                       |                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 6a(ii)A    | ОH                             | CH <sub>2</sub> CH <sub>2</sub> H                                                                                                                                                                                         |  |  |  |  |  |  |
|            |                                | ĊH <sub>2</sub> ĊH <sub>2</sub>                                                                                                                                                                                           |  |  |  |  |  |  |
|            | C-N-                           | c=0                                                                                                                                                                                                                       |  |  |  |  |  |  |
|            |                                | i<br>OH CH₃                                                                                                                                                                                                               |  |  |  |  |  |  |
|            |                                |                                                                                                                                                                                                                           |  |  |  |  |  |  |
|            |                                |                                                                                                                                                                                                                           |  |  |  |  |  |  |
|            |                                | НО                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 6 a ( ) D  | one amino acid                 |                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 6a(ii)B    | structure from:                | CH <sub>2</sub> or GH <sub>2</sub> or H-N-C-C-OH                                                                                                                                                                          |  |  |  |  |  |  |
|            |                                | $\begin{vmatrix} & &   & &   & &   & &   & &   & &   & &   & &   & & &   & & & &   & & & & &   & & & & & & &   & & & & & & & &   & & & & & & & & & &   & & & & & & & & & & & &   & & & & & & & & & & & & & & & & & & & &$ |  |  |  |  |  |  |
|            |                                |                                                                                                                                                                                                                           |  |  |  |  |  |  |
|            |                                | OH CH₃                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 6a(ii)C    |                                | Essential amino acids are amino acids which must be obtained from your diet for                                                                                                                                           |  |  |  |  |  |  |
| <u> </u>   | obtained through diet          | a healthy diet to be obtained. These amino acids cannot be made by the body.                                                                                                                                              |  |  |  |  |  |  |
| 6000       | condensation                   | A condensation reaction occurs when two molecules join together to form                                                                                                                                                   |  |  |  |  |  |  |
| 6a(ii)D    | condensation                   | a bigger molecule and water is removed at the join. Other small molecules can also be removed instead of water.                                                                                                           |  |  |  |  |  |  |
|            |                                |                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 6a(iii)    | Answer to include:             | 1st Mark: enzyme becomes denatured/enzyme changes shape                                                                                                                                                                   |  |  |  |  |  |  |
|            |                                | 2 <sup>nd</sup> Mark:  Intermolecular/hydrogen bonds are broken                                                                                                                                                           |  |  |  |  |  |  |
|            |                                | measuring oxygen cylinder                                                                                                                                                                                                 |  |  |  |  |  |  |
|            |                                | sylvania cylinder                                                                                                                                                                                                         |  |  |  |  |  |  |
|            |                                | syringe                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 6a(iv)     | Answer to include              | oxygen                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Ju(IV)     | one of:                        | hydrogen delivery                                                                                                                                                                                                         |  |  |  |  |  |  |
|            |                                | hydrogen peroxide peroxide beaker                                                                                                                                                                                         |  |  |  |  |  |  |
|            |                                | sweet potato                                                                                                                                                                                                              |  |  |  |  |  |  |
|            |                                | potato                                                                                                                                                                                                                    |  |  |  |  |  |  |

| 6b(i)         | one answer from:                             | To prevent to oxidise in place of the compounds to stop (oxidation of edible oils) unwanted oxidation they have been added to protect food acquiring a rancid flavour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|---------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|               |                                              | 1st Mark. Vitamin C molecule is polar Vitamin C can form hydrogen bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 6b(ii)        | answer to include:                           | due to its hydroxyl groups due to its hydroxyl groups  2nd Mark: Vitamin C is soluble in water because of interactions of polar -OH groups in Vitamin C with polar -OH groups in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 6c            | 975g<br>2 marks for mass<br>1 mark for units | 1kg body weight ↔ 3mg solanine 65kg body weight ↔ 3mg solanine × <sup>65</sup> / <sub>1</sub> =195g solanine 0.2mg solanine ↔ 1g of potato 195mg solanine ↔ 1g of potato × <sup>195</sup> / <sub>0.2</sub> = 975g of potato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| <b>7</b> a    | 0.203g                                       | Heat Energy = Specific Heat Capacity $\times$ Mass $\times$ Change In Temperature $E_h = c \times m \times \Delta T$ $E_h = 4.18 \text{ kJ kg}^{-1}  {}^{\circ} C^{-1} \times 0.1 \text{kg} \times 27^{\circ} C$ $E_h = 11.3 \text{ kJ}$ gfm Heptane $CH_4 = (1 \times 12) + (4 \times 1) = 12 + 4 = 16g$ 1 mol $CH_4 = 891 \text{ kJ} \xrightarrow{\bullet} 16g \times 11.3 \text{ kJ} \xrightarrow{\bullet} 16g \times $ |  |  |  |  |  |  |
| 7b            | -816                                         | Bond Breaking Steps (endothermic)  4xC-H bonds  4x 412kJ = 1648kJ  2xC=O bonds  2x 804kJ = 1608kJ  2xO=O bond  2x 498kJ = 996kJ  4xO-H bonds  4x 463kJ = 1852kJ  Total bond breaking  = 2644kJ  Total bond Forming  = 3460kJ  Enthalpy change = ΣBond Breaking Steps - ΣBond forming steps = 2644 - 3460 = -816kJ mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 7c            | 17.6%                                        | atom economy = $\frac{\text{mass of useful products}}{\text{total mass of reactants}} \times 100 = \frac{(3\times2)}{(1\times16) + (1\times18)} \times 100 = 17.6\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 7d            | High<br>Low                                  | Change in Temperature     Change In Pressure       Maximising Yield of NO₂ = more reverse reaction     • reverse reaction is endothermic     • reverse reaction increases pressure (1vol→2vol)       • Increasing temperature favours the endothermic reaction     • Decreasing pressure favours the pressure-increasing reaction       • HIGH temperature increases reverse reaction     • LOW pressure increases reverse reaction       • HIGH temperature increases yield of NO₂     • LOW pressure increases yield of NO₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| <b>7e</b> (i) | -4632                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 7e(ii)        | H H H<br>                                    | Element Valency No of Bonds made by element  C 4 4  N 3 3  H 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

|                 |                               | A substitute in an age to be made of the about Comment of the second of |
|-----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | increase                      | A catalyst increases the rate of both the forward and reverse reactions by lowering the activation energies of both the forward and reverse reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8a(i)           | increase                      | The position of equilibrium is not changed but the time to get to equilibrium is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | no effect                     | shortened.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8a(ii)          | temperature temperature       | <ul> <li>The forward reaction in the water-gas shift reaction is exothermic.</li> <li>Increasing the temperature favours the endothermic reaction</li> <li>Reverse reaction is endothermic</li> <li>Reverse reaction is favoured by increasing the temperature</li> <li>Less products formed as temperature increase</li> <li>Graph has decreasing slope as yield decreases as temperature increases</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                               | <b>gfm</b> sorbic acid $C_6H_8O_2 = (6\times12)+(8\times1)+(2\times16) = 72+8+32=112$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                               | no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{7}{112} = 0.0625 \text{mol (available)}$<br>n KOH = volume × concentration = 0.25 litres × 0.5 mol t <sup>-1</sup> = 0.125 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8b              | Calculation showing:          | $C_6H_8O_2 + KOH \longrightarrow H_2O + C_6H_7O_2$ 1mol 0.125mol (required)  Less no. of mol of sorbic acid available than is required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                               | :. Sorbic acid is limiting reactant and KOH is in excess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 2.52×10 <sup>-5</sup>         | 1% = 1g per 100cm <sup>3</sup><br>0.002% = 0.002g per 100cm <sup>3</sup><br>100cm <sup>3</sup> = 0.002g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8c              | or                            | $330 \text{cm}^3 = 0.002 g \times \frac{330}{100} = 0.0066 g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 0.0000252                     | gfm = 261.8g  no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.0066}{261.8}$ = 2.52×10 <sup>-5</sup> mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | non-water soluble             | Essential oils are concentrated extracts of volatile, non-water soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | or                            | aroma compounds from plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8d(i)A          | volatile                      | mixtures of many different compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | <sup>or</sup><br>aroma        | widely used in     perfumes   cosmetic products   cleaning products   flavourings in foods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | ai oma                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8d(i)B          | tannana                       | Terpenes are key components in most essential oils.  Terpenes are unsaturated compounds formed by joining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Part I          | terpene                       | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                               | together isoprene (2-methylbuta-1,3-diene) units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8d(i)B          | correct structure<br>drawn of | $H \rightarrow C \rightarrow H$ $H \rightarrow C \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part II         | 2-methylbut-1,3-diene         | H-C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8d(i)B          | 3                             | Formula of zingiberene: $C_{15}H_{24}$ $\therefore$ 3 isoprene units join together Formula of isoprene: $C_5H_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8d(ii) <i>A</i> | water or H2O                  | The difference between the two molecules is the a $C=C$ double bond is formed in the product and an H atom was removed on one side where the $C=C$ double bond formed and a OH group was removed from the other side of where the $C=C$ double bond formed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 8d(ii)B          | Hydroxyl group<br><u>and</u><br>Carbonyl Group                                                                             |                                                                                                                                                                                                                                             | —О—Н                                                                                                                                                                     |                                                                                                  | - OH                                                        | O<br> -<br> -<br> -<br> -<br>                                                                                                                                                                                     |                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 9                | Open Question<br>Answer to Include:                                                                                        | Demonstrates<br>of the chemis<br>comprehension<br>provided in a l<br>including a sta                                                                                                                                                        | tark answer  s a good understanding  try involved. A good  n of the chemistry has  logically correct,  atement of the principles  the application of these  the problem. | Demonstrates of understanding involved, making statement(s) w                                    | of the chemistry<br>g some<br>hich are<br>situation,        | 1 mark answer Demonstrates a limited understanding of the chemist involved. The candidate has m some statement(s) which are to the situation, showing that a little of the chemistry withi problem is understood. | ry<br>ade<br>relevant<br>at least |
| 10a(i)           | One from:                                                                                                                  | Lower th                                                                                                                                                                                                                                    | he number of chlo<br>the higher the Ol<br>ne number of fluo<br>the higher the Ol                                                                                         | oP<br>rine atoms                                                                                 | Higher th                                                   | e number of chlorine a<br>the lower the ODP<br>Ie number of fluorine a<br>the lower the ODP                                                                                                                       |                                   |
| 10a(ii)          | 1+5                                                                                                                        | _                                                                                                                                                                                                                                           | •                                                                                                                                                                        |                                                                                                  |                                                             | nes and 2 bromines                                                                                                                                                                                                |                                   |
| 10a(iii)         | Carbon dioxide and ammonia<br>do not contain halogens<br>or<br>Carbon dioxide and ammonia<br>do not damage the ozone layer | Refrigerant Compound 1 has 2 carbons, 4 fluorines and 2 chlorines  CO <sub>2</sub> and NH <sub>3</sub> lack group 7 elements (halogen) atoms in their structure.  All refrigerant compounds in table have halogen atoms in their structure. |                                                                                                                                                                          |                                                                                                  |                                                             |                                                                                                                                                                                                                   |                                   |
| 10b(i)           | Species<br>(atoms/molecules/particles)<br>with unpaired electron                                                           | Free radicals are atoms or molecules that are highly reactive due to the presence of an unpaired electron.                                                                                                                                  |                                                                                                                                                                          |                                                                                                  |                                                             |                                                                                                                                                                                                                   |                                   |
| 10b(ii) <i>A</i> | Initiation                                                                                                                 | Р                                                                                                                                                                                                                                           | Step Initiation Propagation Termination                                                                                                                                  | Reactants (before Arrow) No free radicals Reactant Side Free Radic Free radicals o Reactant Side | on<br>als found on bo                                       | Products (after Arrow) Free radicals on Product Side  oth sides of arrow  No free radicals on Product Side                                                                                                        |                                   |
| 10b(ii)B         | One from:                                                                                                                  |                                                                                                                                                                                                                                             | _                                                                                                                                                                        | •CH₃ —                                                                                           | → CH<br>→ CH                                                | H <sub>2</sub> F + HF<br>H <sub>2</sub> F <sub>2</sub> + F°<br>H <sub>3</sub> F + F°<br>H <sub>2</sub> F <sub>2</sub> + H°                                                                                        |                                   |
| 10c              | 0.208                                                                                                                      |                                                                                                                                                                                                                                             | 0.05kg                                                                                                                                                                   | <b>→</b> 0.025k                                                                                  | g difluoron<br>g pentafluo<br>25g<br>20 g mol <sup>-1</sup> |                                                                                                                                                                                                                   |                                   |
| 11a(i)           | water<br>and<br>carbon dioxide                                                                                             | copper (<br>carbona<br>metal carbo                                                                                                                                                                                                          |                                                                                                                                                                          |                                                                                                  | pper (II)<br>thanoate                                       | + water + dio>                                                                                                                                                                                                    | bon<br>Kide<br><sub>dioxide</sub> |
| <b>11a</b> (ii)  | Cu <sup>2+</sup> (CH <sub>3</sub> COO <sup>-</sup> ) <sub>2</sub>                                                          | Ethanoa<br>Fo                                                                                                                                                                                                                               | rmula of copp                                                                                                                                                            | formula o<br>er (II) e                                                                           | f CH₃CO<br>thanoate                                         | ns Cu <sup>2+</sup> ions<br>O <sup>-</sup> and valency of<br>is Cu(CH3COC<br>is Cu <sup>2+</sup> (CH3CC                                                                                                           | D).                               |

|          |                    | 1 mark                                                                                                                                                                                                                                                                                                                                                                              | 1mark                                                                                                                                                              | 1mark                                                                  |  |  |  |
|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| 11b      | Answer to include: | Dissolve oxalic acid<br>(in a small volume of<br>deionised water)                                                                                                                                                                                                                                                                                                                   | Transfer quantitatively oxalic acid solution to standard/volumetric flask including rinsings/washings                                                              | Fill volumetric/standard<br>flask up to mark<br>(with deionised water) |  |  |  |
| 11c(i)   |                    | Volumetric bulb pipette to be drawn showing:  • volumetric mark/line  • end of pipette must narrow to a point  A graduated pipette would also be acceptable.                                                                                                                                                                                                                        |                                                                                                                                                                    |                                                                        |  |  |  |
| 11c(ii)  | pink 	o colourless | Colour in conical flask at start: <u>pink</u> as sodium hydroxide solution is in conical flask at start and phenolphthalein is pink in alkaline conditions  Colour in conical flask at end: <u>colourless</u> as sodium hydroxide in conical flask has been neutralised by the addition of oxalic acid from the burette. Phenolphthalein is colourless in acidic/neutral conditions |                                                                                                                                                                    |                                                                        |  |  |  |
| 11c(iii) | concordant         | Results in a titration are described as concordant when the individual titres are within 0.2cm <sup>3</sup> of each other. This ignores the rough titre and any rogue results.                                                                                                                                                                                                      |                                                                                                                                                                    |                                                                        |  |  |  |
| 11d      | 0.27               | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> -  1mol 0.00337mol                                                                                                                                                                                                                                                                                                                     | olume x concentration = $0.02675$ litres  + $2NaOH \longrightarrow Na_2C$ 2mol 0.00674mol  n = $\frac{\text{no. of mol}}{\text{volume}} = 0.00674$ mol 0.025litres |                                                                        |  |  |  |