

Grade	Mark Required		% condidatos achievina anada	
Awarded	(/ 120)	%	% canalaales	achieving grade
A	80+	66.7%	3	2.6%
В	65+	54.1%	2	3.9%
С	50+	41.7%	2	1.3%
D	35+	29.2%	14	4.4%
No award	<35	<29.2%	7.8%	
Section:	Multiple	Choice	Extended Answer	Assignment
Average Mark:	1	7.6 /25	49.7 /95	No Assignment in 2023

2023 Higher Chemistry Marking Scheme % MC Reasoning Answer Correct Qu ☑A Electronegativies Na = 0.9 & I = 2.7 🧠 difference = 1.8 (least ionic character) ■B Electronegativies Na = 0.9 & F = 4.0 ∴ difference = 3.1 A 71 1 ■C Electronegativies K = 0.8 & I = 2.7 : difference = 1.9 ☑D Electronegativies K = 0.8 & F = 4.0 ∴ difference = 3.2 (greatest ionic character) ■A N-H bond in structure : hydrogen bonding would occur between molecules ■B O-H bond in structure : hydrogen bonding would occur between molecules 2 89 ■C N-H bond in structure : hydrogen bonding would occur between molecules ☑D No N-H, O-H or H-F bonds in structure ∴ no hydrogen bonding between molecules 3 85 3H2O ∬ 3x H−O−C−C₁₇H₃₅ -Ċ-O-Ċ-C₁₇H₃₅ 3 fatty acids Fat/Oil ☑A Activation of reverse reaction = 200 - 50 = +150kJ mol⁻¹ B Enthalpy change for reverse reaction = 50 - 150 = -100kJ mol⁻¹ 69 4 Α ☑C Activation of forward reaction = 200 – 150 = 150kJ mol⁻¹ ☑D Enthalpy change for forward reaction = 150 - 50 = +100kJ mol⁻¹ time = 10s : rate = $\frac{1}{\text{time}} = \frac{1}{10s} 0.1 \text{ s}^{-1}$ 5 C 91 Extrapolate from graph: when rate = $0.1s^{-1}$ then concentration = 0.25 mol l⁻¹ EA catalyst speeds up reaction so dotted line would be steeper initially ☑B dotted line is steeper at start and meets full line at horizontal end of line B 74 6 EC catalyst does not change final concentrations so dotted line would meet full line at end ED catalyst speeds up reaction so dotted line would be steeper initially $1 \text{ mol } CH_3OH = -726 \text{ kJ mol}^{-1} = 32g$ $-145.2 \text{ kJmol}^{-1} = 32g \times \frac{-145.2}{-726}$ В 7 80 = 6.4g ☑A Sodium Na atom (covalent radius = 160pm) is larger than sodium Na⁺ ion (ionic radius = 102pm) 🗷 B Chloride Cl⁻ ion (ionic radius = 181pm) is larger than chlorine Cl atom (covalent radius = 100pm) 83 A 8 ☑C Magnesium Mg²⁺ ion (ionic radius = 72pm) is smaller than magnesium Mg atom (covalent radius = 140pm) D Oxygen O atom (covalent radius = 64pm) is smaller than oxide O²⁻ ion (ionic radius = 140pm) \blacksquare A Covalent molecular is found in both elements e.g. O₂ and compounds e.g. H₂O B Covalent network is found in both elements e.g. C (diamond) and compounds e.g. SiO2 87 9 ☑C Monoatomic structures are only found in elements 🗷 D Ionic structures are only found in compounds containing metals and non-metal elements ■A 2-methylbutanal C5H10O is not an isomer of hexanal C6H12O B 3-methylpentan-2-one C6H12O is an isomer of hexanal C6H12O (same formula different structure) 10 B 72 EC 2,2-dimethylbutan-1-ol C6H14O is not an isomer of hexanal C6H12O ■D 3,3-dimethylpentanal C7H14O is not an isomer of hexanal C6H12O

11	С	83	$\begin{array}{c} O \\ \parallel \\ -C - OH \\ H - N - \\ \end{array} \xrightarrow{\text{condensation}} \\ \begin{array}{c} O \\ \parallel \\ -C - N - \end{array} \xrightarrow{\text{condensation}} \\ \begin{array}{c} O \\ \parallel \\ -C - N - \end{array}$
			carboxyl group amine at join peptide link
12	D	50	 A Formation of carbon monoxide indicated incomplete combustion not complete combustion B Formation of carbon monoxide indicated incomplete combustion not complete combustion C enthalpy of combustion is the complete combustion of 1 mole of a substance D The energy change for the complete combustion of 1 mol of a substance
13	D	28	 A ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium B ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium C ethanol and ethanoic acid react to form ethyl ethanoate and water in A and form an equilibrium ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium C ethanol and ethanoic acid react to form ethyl ethanoate and water in A and form an equilibrium D Flask A is the reactants at 100% and Flask B is the products at 100%. They will reach the same equilibrium eventually with ethyl ethanoate, water, ethanol and ethanoic acid present in both flasks at the same cocentrations.
14	С	70	Write Down main species $IO_3^ I_2$ Balance all atoms other than oxygen and hydrogen $2IO_3^ I_2$ Balance O by adding H ₂ O to other side $2IO_3^ I_2 + 6H_2O$ Balance H by adding H ⁺ ions to other side $2IO_3^- + 12H^+$ $I_2 + 6H_2O$
			Balance charge by adding 2IO3 ⁻ + 12H ⁺ + 10e ⁻ → I2 + 6H2O
15	D	78	A Condensation: 2 molecules join together with small molecule e.g. water removed at join B Hydration: Addition reaction where H ₂ O is added across a C=C double bond C Reduction: decrease in oxygen : hydrogen ratio D Oxidation: increase in oxygen : hydrogen ratio ($C_6H_7ON \rightarrow C_6H_5O_2N$) O:H ratio 1:7 \rightarrow 2:5
16	В	46	 ☑ A 3x -OH group makes A the 2nd most polar molecule and A is the 3rd peak left to right ☑ B no -OH groups makes B the least polar molecule and B is the 1st peak left to right (Z) ☑ C 2x -OH group makes C the 3rd most polar molecule and C is the 2nd peak left to right ☑ D 6x -OH group makes D the most polar molecule and D is the 4th peak left to right
17	С	59	 Image: A Draft shield would reduce heat loss to the surroundings Image: B the thermometer in the diagram is too close to the flame and might give inaccurate temp Image: C glass beaker would reduce the heat transfer to the water compared to a copper can Image: D Stirring the water would mix the water better and give a more accurate temp
18	В	85	 A head of soap in ionic and therefore polar B ionic head dissolves in polar water and non-polar tail dissolves in non-polar oil C head of soap in ionic and therefore polar D ionic head is polar and dissolves in polar water rather than non-polar head
19	С	53	 A unreacted nickel oxide must be removed by filtration before evaporation takes place B the filtration of nickel oxide must be followed by evaporation of water to form salt C the unreacted nickel oxide is filtered to remove it and the evaporation that follows removes the water from the nickel sulfate solution to leave nickel sulphate salt D the unreacted nickel oxide must be filtered before evaporation takes place
20	В	76	 A ethanal CH₃CHO is an aldehyde and does not react with alkalis B ethanoic acid CH₃COOH is a carboxylic acid and is neutralised by alkalis. C propanone CH₃COCH₃ is a ketone and does not react with alkalis D ethan-1-ol CH₃CH₂OH is a primary alcohol and does not react with alkalis

21	D	94	 A Secondary alcohol: 2 carbons directly attac B Secondary alcohol: 2 carbons directly attac C Tertiary alcohol: 3 carbons directly attac D Primary alcohol: 1 carbon directly attac 	ched to the carbon with -OH group ched to the carbon with -OH group ched to the carbon with -OH group ched to the carbon with -OH group			
22	٨	<i>(</i> 0	4-methylpentan-2-one is a ketone which reduces to t gfm 4-methylpentan-2-one C ₆ H ₁₂ O = (6x12)+(12x1)+(gfm 4-methylpentan-2-ol C ₆ H ₁₄ O = (6x12)+(14x1)+(4-methylpentan-2-one	form the secondary alcohol 4-methylpentan-2-ol. 1x16) = 72+12+16 = 100g 1x16) = 72+14+16 = 102g 4-methylpentan-2-ol			
22	A	68	$C_6H_{12}O$ $C_6H_{14}O$				
			1mol 100a	1mol 102a			
23	D	42	$gfm O_2 = 32g ∴ no. of mol = {}^{mass}/gfm = {}^{16}/_{32} = 0.5mol (same no. of mol = same volume)$ ⊠ A gfm CO = 28g ∴ no. of mol = {}^{mass}/gfm = {}^{21}/_{28} = 0.75mol ⊠ B gfm CO ₂ = 44g ∴ no. of mol = {}^{mass}/gfm = {}^{44}/_{44} = 1.0mol ⊠ C gfm NO ₂ = 46g ∴ no. of mol = {}^{mass}/gfm = {}^{46}/_{46} = 1.0mol ⊠ D gfm N ₂ O ₄ = 92g ∴ no. of mol = {}^{mass}/gfm = {}^{46}/_{92} = 0.5mol				
24	A	45	Ionic formula aluminium sulfate = (Al ³⁺) ₂ (SO ₄ ²⁻) ₃ 1 mol of Al ₂ (SO ₄) ₃ contains 2 mol of positive Al ³⁺ ions 0.25mol 0.5 mol				
25	В	56	C_2 in C=C double bond has no hydrogens directly attached to it \therefore Cl of H-Cl attaches to C_2 (major product) 2-methylpent-2-ene H CH ₃ H H H C ¹ H C ¹ H H H H H H H H H H H H H H H H H H	C ₃ in C=C double bond has 1 hydrogen directly attached to it ∴ H of H-Cl attaches to C ₃ (major product) 2-chloro-2-methylpentane H CH ₃ H H H H - C - C - C - C - C - H H Cl H H H			

20)23 Higher	Chemistry Marking Scheme
Long Qu	Answer	Reasoning
1a (i)	Greater no. of protons/ nuclear charge holds electrons more tightly	Across a period, the same electron shell is filling up but there is a greater nuclear charge due to the increase atomic number. The outer shell is held more tightly by the nucleus and an electron is harder to remove from the outer shell.
1a (ii)	b or j	Elements c and k are group 0 elements as they have the highest 1 st ionisation energy in their periods. Group 7 elements have the next highest 1 st ionisation energy and elements b and j correspond to the 2 nd highest ionisation energies.
1a(iii)A	Answer to include:	1st mark:2nd electron removed from an electron shell closer to nucleus2nd mark:2nd electron is less screened/shielded (than 1st electron removed)or 2nd electron is more strongly attracted to the nucleus
1a(iii)B	11472	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 b(i)	Attraction atom/nucleus has for electrons within a bond	Electronegativity is a measure of the attraction an atom involved in a bond has for the electrons of the bond (shared pair of electrons)
1b(ii)	Answer to include:	1 st mark: Increased screening/shielding effect (due to more shells) 2 nd mark: Attraction of nucleus/protons for outer electrons decreases
1b(iii)	Strontium (or Barium or Radium)	Strongest reducing agents are found on the top right hand corner of the electrochemical series. First four in top right corner are group 1 elements and Strontium is the first group 2 element.
2a (i)	Answer to Include:	1st mark:(intermolecular) forces increase going down a group2nd mark:London dispersion forces are forces broken between molecules3rd mark:The more electrons the stronger the LDFs
2a (ii)	Hydrogen bonding	Hydrogen bonding occurs between molecules containing one of the following bonds: N - H bond O - H bond H - F bond
2b(i)	34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2b(ii)	40%	$gfm Mg_2Si = 76.7g v \text{ no. of mol} = \frac{mass}{gfm} = \frac{15.32}{76.7} = 0.200 \text{ mol}$ $4HCl + Mg_2Si \longrightarrow SiH_4 + 2MgCl_2$ $1 \text{ mol} \qquad 1 \text{ mol}$ $0.200 \text{ mol} \qquad 0.200 \text{ mol}$ (theoretical) $gfm SiH_4 = 32.1g \qquad \text{no. of mol} = \frac{mass}{gfm} = \frac{2.56}{32.1} = 0.080 \text{ mol} (\text{actual})$ $\% \text{ Yield} = \frac{Actual}{\text{Theoretical}} \times 100 = \frac{0.080}{0.200} \times 100 = 40\%$

		1 st mark: In SiO ₂ covalent bonds are broken	
2b(iii)	Answer to include:	2 nd mark: In SiH4 London dispersion forces Van der Waals' forces Intermolecular forced	
		3 rd mark: Covalent for are stronger bonds need more energy to break Than Intermolecular force	ces 25 ed
3a(i)A	propane-1,2,3-triol	H H H H - C - C - C - H OH OH OH glycerol 3 carbons Single bonds between carbons Functional groups on Carbons 1,2,3 - OH groups -OH groups	3
3a(i)B	condensation	A condensation reaction occurs when two molecules join together with a small molecule removed where they join. The small molecule is usually water.	_
3a(ii)A	carbonyl	O O O O II II II II - C - - C - OH - C - H C - C - O carbonyl group carboxyl group aldehyde group ketone group	•
3a(ii)B	heptan-2-one	Seven carbons in main chain. (hept) Carbonyl functional group between 2 carbons = Ketone (heptanone) Functional group in C ₂ (heptan-2-one)	
3a(ii)C	reduction	Primary Secondary Carboxylic Alcohol Alcohol Acid Oxidation Oxidation reduction Aldehyde Ketone Aldehyde Ketone Oxidation Image: Carboxylic Image: Carboxylic Image: Carboxylic Carboxylic Primary Secondary Carboxylic Primary Secondary Alcohol Alcohol Alcohol	-
3a(ii)D	Reaction 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,0
3a(iii)	Structure drawn of 5-hydroxyoctanoic acid	Н Н Н Н Н Н Н H—C—C—C—C—C—C—C H H H OH H H H	_
3a(iv)A	12-13 minutes	Problem Solving: Interpreting multiple graphs	_
3a(iv)B	Dilute the sample or use less sample	When the concentration of the sample is too large the top of the peak is cut o and this prevent the area under the peak from being calculated.	ff
3b(i)	essential	Essential amino acids are amino acids which must be obtained through the diet the body cannot make these amino acids themselves	۵S
3b(ii)	Н Н О H−N−C−С−ОН CH₂ CH₂ CH2	There are 2 amino acids that appear twice in the portion of proteinSidegroup is attached to basic structure of an amino acid to form• glutamic acid glutamic acidglutamic acid• leucineCH2 HOnly one of those sidegroupsCH2 Hhave a carboxyl group to make the sidegroup an acidCOOH	

3b(iii)	denaturing	When a protein changes shape by a change like heating, the protein changes shape as hydrogen bonds are broken to alter the shape of the protein e.g. spirals of protein unravel.
3с	To prevent non-polar and polar liquids separating (into layers)	Emulsifiers had hydrophilic polar. Heads and hydrophobic non-polar tails. The hydrophobic tails stick into non-polar oil/grease droplets and hydrophilic heads stay outside the oil/grease droplets in the polar water. The oil/grease droplets cannot join together are form an oil/grease layer which spoils the appearance of the food.
3d	Calcium propanoate	Ca ²⁺ (CH ₃ CH ₂ COO ⁻) ₂ is the salt formed by the neutralisation of propanoic acid (CH ₃ CH ₂ COOH) with a calcium-containing base e.g. calcium hydroxide
4	Open Question Answer to Include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
5a(i)A	494	0.05litres glucose solution contains 5.79g glucose 16litres glucose solution contains 5.79g glucose x $^{16}/_{0.05}$ = 1852.8g glucose gfm C ₆ H ₁₂ O ₆ = 180g no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{1852.8}{180}$ = 10.3mol C ₆ H ₁₂ O ₆ \rightarrow 2C ₂ H ₅ OH + 2CO ₂ 1mol 2mol 2mol 10.3mol 20.6mol Volume = no. of mol x Molar Volume = 20.6mol x 24litres mol ⁻¹ = 494litres
5a(i)B	51.1	atom economy = $\frac{\text{Mass of useful produce}}{\text{Mass of reactants}} \times 100 = \frac{2\times46}{1\times180} \times 100 = \frac{92}{180} \times 100 = 51.1\%$
5a (ii)	12.2	% alcohol by volume = Change in specific gravity 0.7362 x100 = 1.075 - 0.985 0.7362 x100 = 12.2%
5b(i)	Answer to include one from:	Acidified dichromate would turn orange to green with methanolHot copper (II) oxide would turn black to brown with methanol and no colour change with propan-2-one.And no colour change with propan-2-one.and no colour change with propan-2-oneThe oxidising agents Fehling's solution and Tollen's reagent would not react with methanol or propan-2-one
5b(ii) A	terpenes	Terpenes are formed when isoprene C_5H_8 units join together. The terpenes formed have a carbon number with is a multiple of 5, depending in how many isoprenes joined together.
5b(ii)B	C₅H8 unit circled as shown opposite:	$\begin{array}{ c c }\hline CH_3 \\ H_2C \\ CH \\ H_2C \\ CH \\ H_3C \\ CH_2 \\ CH_2 \\ H_3C \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ H_3C \\ CH_2 \\ C$

6b(i)B	Graph moves to right	kinetic energy
6b(ii)	Line to the left of dotted line diagram	Boot bouties and the second se
6c(i)	rate of forward reaction equals rate of reverse reaction	At equilibrium: rate of forward reaction = rate of reverse reaction (and concentration of reactants and products are constant)
6c(ii)A	Answer to include:	1st mark:equilibrium shifts to right hand sideorincreases yield of ammonia2nd mark:decreases the rate of reverse reactionorrate of forward reaction is then greater than rate of reverse reaction
6c(ii)B	One answer from:	recycling of unused air is a low cost or free uses a catalyst gases/reactants resource (to reduce energy costs)
6d(i)	4NH₃+3O₂ ↓ 2N₂+6H₂O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$3O_2 + 4NH_3 \rightarrow 2N_2 + 6H_2O$
6d(ii)	ammonia or NH3	Reducing Agent: reduced something else and is oxidised itself. NH ₃ is oxidised and loses electrons: 2NH ₃ + 6OH ⁻ \rightarrow N ₂ + 6H ₂ O + 6e ⁻
7 a(i)	hard water	Hard water contains large quantities of (usually) calcium Ca ²⁺ ions. These ions react with soap to form an insoluble precipitate known as scum.
7 a(ii)	hydrophilic	hydrophilic The ionic head of a detergent molecule is hydrophilic as it is polar and dissolved in water hydrophobic The hydrocarbon tail of a detergent molecule is hydrophobic as it is non-polar and will not mix with water. The hydrocarbon tail will stick into non-polar oil/arease instead
7a (iii)	8.37×10 ⁻⁴ or 0.000837	no. of mol EDTA = volume x concentration = 0.0093litres x 0.0045mol 1 ⁻¹ = 4.185x10 ⁻⁵ mol $Ca^{2+} + C_{10}H_{12}N_2O_8^{4-} \longrightarrow [Ca(C_{10}H_{12}N_2O_4)]^{2-}$ 1mol 1mol 4.185x10 ⁻⁵ mol 4.185x10 ⁻⁵ mol concentration = $\frac{no. of mol}{volume} = \frac{4.185x10^{-5}mol}{0.05litres} = 8.37x10^{-4}mol$

7b	4.4 to 5.4	Draw a best fit straight line on graph ignoring the rogue point at 4mg l ⁻¹ . Draw a line horizontally from Absorbance = 0.08 to the best fit straight line and then vertically go down to x-axis to read the concentration.
7c(i)	Answer to include:	1st Mark: Trichloromethane is polar. 1st Mark: and Tetrachloromethane is non-polar. 2nd Mark: Trichloromethane has a permanent dipole. and Tetrachloromethane has no permanent dipole.
7c(ii)	-14	Bond Breaking Steps (endothermic) Bond Forming Steps (exothermic) 1xC-H bond 1x 412kJ = 412kJ 1xC-H bond 1x 412kJ = 412kJ 3x C-Cl bonds 3x 338kJ = 1014kJ 2xC-F bonds 2x 484kJ = 968kJ 2xH-F bond 2x 570kJ = 1140kJ 1xC-Cl bonds 1x 338kJ = 338kJ Total bond breaking = 2566kJ Total bond forming = 2580kJ Enthalpy change = ΣBond Breaking Steps - ΣBond forming steps = 2566 - 2580 = -14kJ mol ⁻¹ 2x
8	Open Question Answer to Include:	3 mark answer 2 mark answer 1 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understanding of the chemistry involved and the application of these Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are a little of the chemistry within the problem is understood.
9 a(i)	1 mark each:	1 st Mark: Longer the carbon chain the higher the boiling point 2 nd Mark: Further Down group 7 the halogen is the higher the boiling point
9a (ii)	Permanent dipole to permanent dipole attractions.	The carbon – halogen C-X bond is a polar bond due to the difference in electronegativities between the two elements. Permanent dipoles are formed when the electrons in the bond are shared unequally. The element with the higher electronegativity has a slightly negatively charge (δ -). The halogen in the C=X bond will carry the δ - charge. Permanent dipole to permanent dipole attractions bring the molecules closer together and raise the boiling point as a result.
9 b(i)	One answer from:	2 carbons attached to the carbon with the halogen attached. 1 hydrogen attached to the carbon with the halogen attached.
9b(ii)	H Br H H-C - C - C-H H CH₃ H	To be an isomer of 2-bromobutane then must have formula C4H9Br. To be a tertiary haloalkane, structure must have three carbons/no hydrogens attached to the carbon with the bromine attached.
9 c(i)	Ultraviolet light or u.v.	Ultraviolet light is required to provide the energy required to split the covalent bond in halogen in the initiation step.
9c(ii)	One answer from:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
9d	H H H H H–C–C–C–C–H H H Br H	Tollen's Reagent and Fehling's solution will react with aldehydes only.• R C4H8O must be an ketone if it does not react with Tollens and Fehling's.• Q C4H9OH must be a secondary alcohol if it is oxidised into ketone RHaloalkane P \rightarrow Alcohol Q \rightarrow Ketone R C_4H_9Br \rightarrow C_4H_9OH \rightarrow C_4H_8O H H H H H H H H H H H H H H H H H H H
9e	Answer shown:	2-bromo-3-chloro-1,1,1-trifluoropentane

10a Answer to include: Internet into include: Internet include	t, <u>le.</u> rence ing hot
10a Answer to include: Mark balance with the crucible onto the weighing boat. Record mass. Transfer into the crucible. Transfer mixture into the crucible. 2 nd Transfer 1.5 g Reweigh the weighing boat and record the mass/calculate the difference Reweigh the weighing boat and record the mass/calculate the difference 10b(i) to allow gas/CO2 to escape The gas formed in the reaction will build up in the crucible under the lid. Lifting the lid will prevent. Pressure building up that could dislodge the lid. 10b(ii) reactants/products are not flammable Bunsen burners should be replaced with non-flammable heating methods like heating mantles when the reactants or products are flammable.	le. rence ing hot
1000 1000	rence ing hot
10b(i) to allow gas/CO2 to escape The gas formed in the reaction will prevent. Pressure building up that could dislodge the lid. 10b(ii) reactants/products are not flammable Bunsen burners should be replaced with non-flammable heating methods like heating mantles when the reactants or products are flammable.	ing hot
10b(i)to allow gas/CO2 to escapeThe gas formed in the reaction will build up in the crucible under the lid. Lifti the lid will prevent. Pressure building up that could dislodge the lid.10b(ii)reactants/products are not flammableBunsen burners should be replaced with non-flammable heating methods like h plates and heating mantles when the reactants or products are flammable.	ing hot
IOD(i)gas/CO2 to escapethe lid will prevent. Pressure building up that could dislodge the lid.IOD(ii)reactants/products are not flammableBunsen burners should be replaced with non-flammable heating methods like heating mantles when the reactants or products are flammable.	hot
10b(ii) reactants/products Bunsen burners should be replaced with non-flammable heating methods like h are not flammable plates and heating mantles when the reactants or products are flammable.	hot
IUD (11) are not flammable plates and heating mantles when the reactants or products are flammable.	
m ass of crucible before heating = 1.598g m ass of crucible after heating = 1.294g	
mass of CO ₂ released = 1.598g - 1.294g = 0.304g	
$g_1 m c c_2 = 4 r g$ mass 0.304	
n o. of mol = $\frac{1}{gfm}$ = $\frac{1}{44}$ = 0.00691mol	
$MgCU_3 \longrightarrow MgU + CU_2$	
1mol 1mol	
0.00691mol 0.00691mol	
gtm $MgCO_3 = 84.3g$	
mass = no. or moi x grm = 0.00091 x 84.3 = 0.582g	
conical H	
10d(i) / (i)	
excess acid	
magnesium carbonate	
Only gases that are insoluble or have low solubility in water should be collect	over
10d(ii) carbon dioxide has water this water. There is some loss of gas during the process. The best way	to
low solubility in water collect CO2 in a gas syringe so there is no loss of any gas by dissolving in wate	er.