X100/701

NATIONAL QUALIFICATIONS 2004

FRIDAY, 21 MAY 1.00 PM - 4.00 PM

MATHEMATICS ADVANCED HIGHER

Read carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions.
- 3. Full credit will be given only where the solution contains appropriate working.

Answer all the questions.

3

2

2

4

2

1

2

5

1. (a) Given
$$f(x) = \cos^2 x \ e^{\tan x}$$
, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, obtain $f'(x)$ and evaluate $f'(\frac{\pi}{4})$. 3,1

(b) Differentiate
$$g(x) = \frac{\tan^2 2x}{1+4x^2}$$
. 3

2. Obtain the binomial expansion of $(a^2 - 3)^4$.

3. A curve is defined by the equations

$$x = 5\cos\theta, \qquad y = 5\sin\theta, \qquad (0 \le \theta < 2\pi).$$

Use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ . 2

Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$. 3

4. Given z = 1 + 2i, express $z^2(z + 3)$ in the form a + ib. Hence, or otherwise, verify that 1 + 2i is a root of the equation

$$z^3 + 3z^2 - 5z + 25 = 0.$$

Obtain the other roots of this equation.

5. Express
$$\frac{1}{x^2 - x - 6}$$
 in partial fractions.

Evaluate $\int_0^1 \frac{1}{x^2 - x - 6} dx$.

- 6. Write down the 2 × 2 matrix M₁ associated with an anti-clockwise rotation of ^π/₂ radians about the origin. Write down the matrix M₂ associated with reflection in the x-axis. Evaluate M₂M₁ and describe geometrically the effect of the transformation represented by M₂M₁.
- 7. Obtain the first three non-zero terms in the Maclaurin expansion of $f(x) = e^x \sin x$.
- 8. Use the Euclidean algorithm to show that (231, 17) = 1 where (a, b) denotes the highest common factor of a and b.
 Hence find integers x and y such that 231x + 17y = 1.

9. Use the substitution
$$x = (u - 1)^2$$
 to obtain $\int \frac{1}{(1 + \sqrt{x})^3} dx$.

[X100/701]

Page two

4

5

- 10. Determine whether the function $f(x) = x^4 \sin 2x$ is odd, even or neither. Justify your answer.
- 11. A solid is formed by rotating the curve $y = e^{-2x}$ between x = 0 and x = 1 through 360° about the x-axis. Calculate the volume of the solid that is formed.
- 12. Prove by induction that $\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$ for all integers $n \ge 1$. 5
- 13. The function f is defined by $f(x) = \frac{x-3}{x+2}$, $x \neq -2$, and the diagram shows part of its graph.

- Obtain algebraically the asymptotes of the graph of f. *(a)* 3 *(b)* Prove that *f* has no stationary values. 2 Does the graph of *f* have any points of inflexion? Justify your answer. (c)2 Sketch the graph of the inverse function, f^{-1} . State the asymptotes and (d)domain of f^{-1} . 3 14. Find an equation of the plane π_1 containing the points A(1, 0, 3), (a)B(0, 2, -1) and C(1, 1, 0). 4 Calculate the size of the acute angle between π_1 and the plane π_2 with equation x + y - z = 0. 3
 - (b) Find the point of intersection of plane π_2 and the line

$$\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2}.$$
 3

[Turn over for Questions 15 and 16 on Page four

Marks

3

5

Page three

15.	(<i>a</i>)	A mathematical biologist believes that the differential equation dy	Marks
		$x\frac{dy}{dx}-3y=x^4$ models a process. Find the general solution of the	
		differential equation.	5
		Given that $y = 2$ when $x = 1$, find the particular solution, expressing y in terms of x.	2
	(<i>b</i>)	The biologist subsequently decides that a better model is given by the	
		equation $y \frac{dy}{dx} - 3x = x^4$.	
		Given that $y = 2$ when $x = 1$, obtain y in terms of x.	4
16.	<i>(a)</i>	Obtain the sum of the series $8 + 11 + 14 + \ldots + 56$.	2
	<i>(b)</i>	A geometric sequence of positive terms has first term 2, and the sum of the first three terms is 266. Calculate the common ratio.	3
	(<i>c</i>)	An arithmetic sequence, A , has first term a and common difference 2, and a geometric sequence, B , has first term a and common ratio 2. The first four terms of each sequence have the same sum. Obtain the value	
		of <i>a</i> .	3
		Obtain the smallest value of n such that the sum to n terms for sequence B is more than twice the sum to n terms for sequence A .	2

[END OF QUESTION PAPER]