

2024 Mathematics

Higher - Paper 1

Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Marking Instructions for each question

Question		n	Generic scheme	Illustrative scheme	Max mark
1.			• use $m = \tan \theta$	• ¹ $m = \tan 30^{\circ}$	3
			• ² evaluate exact value	$\bullet^2 \frac{1}{\sqrt{3}}$	
			• ³ determine equation	• ³ eg $y = \frac{1}{\sqrt{3}}x + 4$ or $\sqrt{3}y - 4\sqrt{3} = x$	

Notes:

1. Do not award \bullet^1 for $m = \tan^{-1} 30^\circ$. However \bullet^2 and \bullet^3 are still available.

- 2. Do not penalise the omission of a degree symbol at \bullet^1 .
- 3. Where candidates make no reference to a trigonometric ratio, or use an incorrect trigonometric ratio, \bullet^1 and \bullet^2 are unavailable. See Candidate A.
- 4. \bullet^3 is only available as a consequence of attempting to use a tan ratio. See Candidate F.
- 5. \bullet^3 is not available for using a gradient of 30.
- 6. At •³ accept any rearrangement of a candidate's equation where constant terms have been simplified.

7. Accept
$$y-4 = \frac{1}{\sqrt{3}}(x)$$
 but not $y-4 = \frac{1}{\sqrt{3}}(x-0)$ for •³.

Commonly Observed Responses:

Candidate A - no tri $m = \frac{1}{\sqrt{3}}$ $y = \frac{1}{\sqrt{3}}x + 4$	ig ratio ●1 ▲ ●2 ✓2 ●3 ✓1	Candidate B $m = \tan \theta$ $y = \frac{1}{\sqrt{3}}x + 4$	●1 ▲ ●2 ✓ ●3 ✓	Candidate C $m = \tan \theta$ $y = \sqrt{3}x + 4$	•1 ^ •2 x •3 x
Candidate D		Candidate E - no re	ference	Candidate F - not using tan	
$m = \tan \theta = 30$	●1 \$	to <i>m</i>		$m = \sin 30^{\circ}$	•1 🗶
$m = \frac{1}{\sqrt{3}}$	● ² ✓ 1	$\tan 30^\circ = \frac{1}{\sqrt{3}}$	•2 🗸	$m=\frac{1}{2}$	•² ✓ ₂
$y = \frac{1}{\sqrt{3}}x + 4$	● ³ ✓ 1	$y-4=\frac{1}{\sqrt{3}}(x-0)$	●1 🗸	$y = \frac{1}{2}x + 4$	• ³ ✓ 2
		$y = \frac{1}{\sqrt{3}}x + 4$	•3 🗸		

Question		on	Generic scheme	Illustrative scheme	Max mark		
2.	(a)		•1 calculate second term	• ¹ 16	1		
Note	es:	1			1		
1. (1. Candidates who use $u_0 = 20$ and then calculate $u_1 = 16$ gain \bullet^1 .						
Com	nmonly	/ Obse	erved Responses:				
	-1	1					
	(b)	(i)	• ² communicate condition for limi to exist	t • ² a limit exists as $-1 < \frac{1}{5} < 1$	1		
		(ii)	• ³ know how to calculate a limit	• ³ $\frac{12}{1-\frac{1}{5}}$ or $L = \frac{1}{5}L + 12$	2		
			• ⁴ calculate limit	• ⁴ 15			
Note	es:				1		
3.	2. For \bullet^2 accept: any of $\cdot -1 < \frac{1}{5} < 1$ ' or $\cdot \left \frac{1}{5} \right < 1$ ' or $\cdot 0 < \frac{1}{5} < 1$ ' with no further comment; or statements such as: $\cdot \frac{1}{5}$ lies between -1 and 1' or $\cdot \frac{1}{5}$ is a proper fraction'. 3. \bullet^2 is not available for: $\cdot -1 \le \frac{1}{5} \le 1$ ' or $\cdot \frac{1}{5} < 1$ ' or statements such as: \cdot It is between -1 and 1.' or $\cdot \frac{1}{5}$ is a fraction'.						
4. (Candid	ates v	who state $-1 < a < 1$ can only gain \bullet^2	if it is explicitly stated that $a = \frac{1}{5}$.			
5. 6. 4 7. 8. 4	 Do not accept L = ³/_{1-a} with no further working for •³. •³ and •⁴ are not available to candidates who conjecture L = 15 following the calculation of further terms in the sequence. For L = 15 with no working award 0/2. •⁴ is only available where •³ has been awarded. 						
Com	nmonly	/ Obse	erved Responses:				
Can a = -1 <	didate 1 5 < a < 1	A so a li	mit exists ● ² ✓	Candidate B - no explicit reference to <i>a</i> $u_{n+1} = au_n + b$ $u_{n+1} = \frac{1}{5}u_n + 12$			
	$-1 < a < 1$ so a limit exists \bullet^2 \land						

Question		on	Generic sch	eme	Illustra	tive scheme	Max mark
3.			• ¹ start to differenti	ate	•1 $7(5x^2+3)^6$		2
			• ² complete differen	itiation	• ² × 10x		
Note	es:						
1. •	¹ is av	warde	d for the appearance	of $7(5x^2+3)^6$			
2. F	or 70	$x(5x^2)$	$(2^2+3)^6$ with no working	g, award 2/2.			
3. A	Accept	t 7 <i>u</i> ⁶	where $u = 5x^2 + 3$ for	• ¹ .			
4. C)o not	awaı	d \bullet^2 where the answer	includes ' $+c$			
Com	monly	y Obs	erved Responses:				
Cano	didate	e A - d	lifferentiating over tv	vo lines Ca	ndidate B - poo	r notation	
7(5:	(x^2+3)) ⁶	•	¹ ✓ y =	$=\left(5x^2+3\right)^7$	$y = 5x^2 + 3$	
7(5:	(x^2+3)) ⁶ ×10	x •	2 🔨		$\frac{dy}{dx} = 10x$	
				$\frac{dy}{dx}$	$=7(5x^2+3)^6\times$	10 <i>x</i> • ¹	✓ • ² ✓
Candidate C - poor communication				Cai	Candidate D - insufficient evidence for \bullet^1		
<i>y</i> =	$(5x^2 +$	- 3)′		70	$(5x^2+3)^6$	• ¹	x • ² x
<i>y</i> = 7	$7(5x^2)$	$+3)^{6}$	×10 <i>x</i> •	¹ • ² • or 35	$\left(5x^2+3\right)^6$	• ¹	x • ² x

Question		Generic scheme	Illustrative scheme	Max mark
4.		Method 1	Method 1	2
		• ¹ interpret ratio	$\bullet^{1} \begin{pmatrix} 2 \\ 4 \\ -4 \end{pmatrix}, \begin{pmatrix} -2 \\ -4 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ -6 \end{pmatrix} \text{ or } \begin{pmatrix} -3 \\ -6 \\ 6 \end{pmatrix}$	
		• ² find coordinates of R	• ² (-4,5,-2)	
		Method 2	Method 2	
		• ¹ interpret ratio	• ¹ eg $\overrightarrow{PR} = \frac{2}{5}\overrightarrow{PQ}$, $\overrightarrow{QR} = \frac{3}{5}\overrightarrow{QP}$ or	
			$\overrightarrow{PR} = \frac{2}{3}\overrightarrow{RQ}$	
		• ² find coordinates of R	• ² (-4,5,-2)	
		Method 3	Method 3	
		• ¹ use section formula	• ¹ $\frac{1}{5}(3\mathbf{p}+2\mathbf{q})$	
		• ² find coordinates of R	• ² (-4,5,-2)	
Notes:				
1. For (-	4,5,-2) without working award 2/2.		
2. For (-	4 5 wit 2	hout working award 1/2.		
3. For (-3,7,-	–4) (ratio of 3:2 with working) awar	rd 1/2. See Candidate A.	
(-	-3	,		
4. For 7	7	hout working award 0/2.		
Commonl		arved Perpenses		
Candidate	y Ουse Δ		Candidata P	
$\overrightarrow{PP} = 3\overrightarrow{PO}$		-1 x		
$r_{X} = \frac{1}{5}r_{X}$		• *	$\overrightarrow{RQ} = \overrightarrow{3}$ • 1 \checkmark	
$R = (-3, 7, -4) \qquad \bullet^2 \checkmark_1$			3PR =2RQ	
			$3(\mathbf{r}-\mathbf{p})=2(\mathbf{q}-\mathbf{r})$	
			$5\mathbf{r} = 2\mathbf{q} + 3\mathbf{p}$	
			Leading to correct answer of $R = (-45 - 2)$	
			·· (', 5, 2)	

Question	Generi	c scheme		Illustrative	e scheme	Max mark
4. (continued)			·			
Candidate C			Candic	late D 2)		
$\overrightarrow{PQ} = \begin{bmatrix} 10\\ -10 \end{bmatrix}$			$\overrightarrow{PR} = \begin{bmatrix} \\ \\ \end{bmatrix}$	4 _4	• ¹ 🗸	
$R = \begin{pmatrix} 2 \\ 4 \\ -4 \end{pmatrix}$		• ¹ ✓	R(-8,-	3,6)	• ² ¥	
$ R = \begin{pmatrix} -6\\1\\2 \end{pmatrix} + \begin{pmatrix} 2\\4\\-4 \end{pmatrix} $						
$R = \begin{pmatrix} -4 \\ 5 \\ -2 \end{pmatrix}$						
R(-4,5,-2)		●2 ✓				
Candidate E - st values	epping out using a	absolute				
2	: 3 5					
-62	or 3 -1					
1	<u>10</u> // 11					
4	or 6 10					
2 4	or 6 -8	• ¹ 🗸				
R(-4,5,-2)		• ² ✓				

Question		on	Generic scheme	Illustrative scheme	Max mark	
5.			Method 1	Method 1	3	
			• ¹ equate composite function to x	• ¹ $h(h^{-1}(x)) = x$		
			• ² write $h(h^{-1}(x))$ in terms of $h^{-1}(x)$	• ² $2(h^{-1}(x))^3 - 7 = x$		
			• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$		
			Method 2	Method 2		
			• ¹ write as $y = h(x)$ and start to rearrange	• ¹ $y = h(x) \Rightarrow x = h^{-1}(y)$ $y + 7 = 2x^{3}$		
			• ² express x in terms of y	• ² $x = \sqrt[3]{\frac{y+7}{2}}$		
			• ³ state inverse function	• ³ $h^{-1}(y) = \sqrt[3]{\frac{y+7}{2}}$		
				$\Rightarrow h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$		
Not	es:					
1.	In met	thod '	1, accept $2(h^{-1}(x))^3 - 7 = x$ for \bullet^1 ar	nd \bullet^2 .		
2.	In met	thod 2	2, accept ' $y + 7 = 2x^3$ ' without refer	ence to $y = h(x) \Longrightarrow x = h^{-1}(y)$ at \bullet^1 .		
3.	In met	thod 2	2, accept $h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ without re	eference to $h^{-1}(y)$ at \bullet^3 .		
4.	In met equiva	thod 2 alent.	2, beware of candidates with workin See candidates A and B for example	g where each line is not mathematica	ally	
5.	At \bullet^3 s	stage,	, accept h^{-1} written in terms of any	dummy variable.		
	For example $h^{-1}(y) = \sqrt[3]{\frac{y+7}{2}}$.					
6.	$y = \sqrt[3]{2}$	$\frac{x+7}{2}$	does not gain \bullet^3 .			
7.	$h^{-1}(x)$	$) = \sqrt[3]{2}$	$\frac{\overline{x+7}}{2}$ with no working gains 3/3.			

Question	Generic scheme	Illustrative scheme	Max mark
5. (continued)			
Commonly Obs	erved Responses:		
Candidate A	c	andidate B	
$h(x) = 2x^3 - 7$	h	$u(x) = 2x^3 - 7$	
$y = 2x^3 - 7$	J	$y = 2x^{3} - 7$ -	
$x = \sqrt[3]{\frac{y+7}{2}}$	• ¹ • • ² • ^x	$x = 2y^3 - 7$ -1 $\bullet^1 $	¢
$\frac{\sqrt{2}}{\sqrt{x+7}}$	پر ا	$y = \sqrt[3]{\frac{x+7}{2}} \qquad \qquad \bullet^2 \qquad \qquad \bullet^2$	1
$\bigvee V 2$	- h	$a^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ • ³	/ 1
$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	-	V Z	
Candidate C	С	andidate D - Method 1	
$x = 2h(x)^3 - 7$	• ¹ × h	$h(h^{-1}(x)) = 2(h^{-1}(x))^3 - 7$ • ²	/
$h(x) = \sqrt[3]{\frac{x+7}{2}}$	• ² ✓ 1 x	$x = 2(h^{-1}(x))^3 - 7$ • ¹	
$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	• ³ ✓ ₁ h	$u^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$ • ³	
Candidate E	С	andidate F - BEWARE of incorrect no	tation
$x \rightarrow x^3 \rightarrow 2x^3$	$\rightarrow 2x^3 - 7 = h(x) \qquad h$	$a'(x) = \bullet^3 \bullet$	¢
$\times 2 \rightarrow -2$	7 ÷2 ● ¹ ✓		
$\sqrt{\frac{x+7}{2}}$	• ² ✓		
$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}$	• ³ •		

C	uestic	n	Generic scheme		Illustrative scheme	Max mark		
6.	(a)	(i)	• ¹ find value of $\cos p$		• $\cos p = \frac{2}{\sqrt{5}}$ stated or implied by • ²	3		
			• ² substitute into the formula for $\sin 2p$		• ² $2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}}$			
			• ³ simplify answer		$\bullet^3 \frac{4}{5}$			
		(ii)	• ⁴ evaluate cos2 <i>p</i>		• $\frac{3}{5}$	1		
Note	es:					•		
1. E 2. V 3. V 4. 4 5. E	 Evidence for •¹ may appear in (a)(ii). Where a candidate substitutes an incorrect value for cos p at •², •² may be awarded if the candidate has previously stated this incorrect value or it can be implied by a diagram or Pythagoras calculation. See Candidates A and B. Where a candidate explicitly states a value for cos p, subsequent working must follow from that value for •² to be awarded. •³ is only available as a consequence of substituting into a valid formula at •². Do not penalise trigonometric ratios which are less than -1 or greater than 1 throughout this question. 							
Com	monly	Obse	rved Responses:					
Cand	idate .	A - in	correct use of Pythagoras	Candidat	e B - no evidence of Pythagoras			
$\sqrt{5}$	$\frac{1}{2}$ + 1 ² -	- 16	• ¹ ¥		• ¹ ^			
2×-	$\frac{1}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{5}}$		• ² ✓ 1	$2 \times \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}}$	$\frac{\sqrt{6}}{\sqrt{5}}$ • ² ×			
$\frac{2\sqrt{6}}{5}$	5 45		• ³ ✓ 1	$\frac{2\sqrt{6}}{5}$	• ³ ✓ 1			
Cand	idate	С						
2×si	$n\frac{1}{\sqrt{5}}$ ×	$\cos\frac{2}{\sqrt{2}}$	$\frac{2}{5}$ $\bullet^1 \checkmark \bullet^2 \mathbf{x}$					
4 5	1		• ³ ×					
	(b)		• ⁵ evaluate $\sin 4p$		• ⁵ $\frac{24}{25}$	1		
Note	es:							
6.	⁵ is on	ly ava	ailable for an answer expresse	d as a sin	gle fraction.			
Com	monly	0bse	erved Responses:					

	mark
7. Method 1	4
• ¹ substitute for y • ¹ $x^2 + (2x)^2 - 14x - 8(2x) + 45 = 0$	
• ² write in standard quadratic form • ² $5x^2 - 30x + 45 = 0$	
• ³ determine <i>x</i> -coordinate • ³ 3	
• ⁴ determine <i>y</i> -coordinate • ⁴ 6	
Method 2 Method 2	
• 1 substitute for x $\bullet^{1}\left(\frac{y}{2}\right)^{2} + y^{2} - 14\left(\frac{y}{2}\right) - 8y + 45 = 0$	
• ² write in standard quadratic form $\bullet^2 \frac{5}{4}y^2 - 15y + 45 = 0$	
• ³ determine <i>y</i> -coordinate • ³ 6	
• ⁴ determine <i>x</i> -coordinate • ⁴ 3	
Method 3 Method 3	
• ¹ use centre and perpendicular gradient to determine equation of radius through point of contact	
• ² substitute for y • ² $x+2(2x)=15$	
• ³ determine <i>x</i> -coordinate \mathbf{e}^{4} 6	
• ⁴ determine <i>y</i> -coordinate	

- 1. In Methods 1 and 2, treat an absence of brackets at the •¹ stage as bad form only if corrected on the next line of working.
- 2. In Methods 1 and 2, \bullet^1 is only available if the '=0' appears by the \bullet^2 stage.
- 3. In Methods 1 and 2, if a candidate arrives at an equation which is not a quadratic \bullet^3 and \bullet^4 are unavailable.
- 4. Where the quadratic obtained at \bullet^2 in Methods 1 and 2, does not have repeated roots \bullet^3 and \bullet^4 are not available.
- 5. In Method 3 accept $y 4 = -\frac{1}{2}(x 7)$, $-\frac{1}{2} = \frac{4 y}{7 x}$ or equivalent for \bullet^{-1} .
- 6. In Method 3 \cdot^2 , \cdot^3 and \cdot^4 are unavailable to candidates who find the equation of any other line.
- 7. For (3,6) without working, award 0/4.
- 8. For answer of (3,6) verified in both equations, or (3,6) generated by the linear equation and verified in the equation of the circle, award 4/4.

Question	Generic scheme	Illustrative scheme	Max mark
7. (continued)			
Commonly Obse	erved Responses:		
Candidate A - su the circle	ubstitution into the equation of		
: x = 3	• 3 🗸		
$(3)^2 + y^2 - 14(3)$)-8y+45=0		
$y^2 - 8y + 12 = 0$			
(y-2)(y-6) =	0		
<i>y</i> = 6	•4 🗸		
no need t	to explicitly consider $y = 2$		
However,			
(3,6) and (3,2)	•4 🗶		

Question		n	Generic scheme	Illustrative scheme	Max mark
8.			• ¹ use discriminant	• ¹ $(m-4)^2 - 4(1)(2m-3)$	4
			• ² apply condition	• ² $(m-4)^2 - 4(1)(2m-3) < 0$	
			• ³ identify roots of quadratic expression	• ³ 2, 14	
			• ⁴ state range with justification	• ⁴ 2 < <i>m</i> < 14 with eg labelled sketch or table of signs	

Notes:

1. At \bullet^1 , treat the inconsistent use of brackets: For example $m-4^2-4(1)(2m-3)$ or

 $(m-4)^2 - 4 \times 1 \times 2m - 3$ as bad form only if the candidate deals with the unbracketed terms correctly in the next line of working.

- 2. Where candidates express *a*, *b* and *c* in terms of *m*, and then state $b^2 4ac < 0$, award \bullet^2 .
- 3. If candidates have the condition 'discriminant > 0', 'discriminant \leq 0' or 'discriminant \geq 0', then \bullet^2 is lost but \bullet^3 and \bullet^4 are available.
- 4. Ignore the appearance of $b^2 4ac = 0$ where the correct condition has subsequently been applied.
- 5. If candidates only work with the condition 'discriminant = 0 ', then \bullet^2 and \bullet^4 are unavailable.
- 6. Accept the appearance of 2 and 14 within inequalities for \bullet^3 .
- 7. At •⁴ accept "m > 2 and m < 14" or "m > 2, m < 14" together with the required justification.
- 8. For the appearance of x in any expression of the discriminant, no further marks are available.

Commonly Observed Responses:	
Candidate A - no expressions for a, b and c	Candidate B
No real roots $b^2 - 4ac < 0$	
$m^2 - 16m + 28 = 0$ • ¹ \checkmark	$(m-4)^2 - 4(1)(2m-3)$ • ¹ \checkmark
$m = 2, m = 14$ • ³ \checkmark	$m^2 - 16m + 28 = 0$
$2 < m < 14$ $\bullet^2 \checkmark \bullet^4 \checkmark$	$m = 2, m = 14$ • ³ \checkmark
In this case \bullet^2 is only available	$b^2 - 4ac < 0$ $2 < m < 14$ $e^2 \checkmark e^4 \checkmark$
where • ⁴ is awarded	In this case • ² is only available where • ⁴ is awarded

Question	Generi	c scheme		Illu	ustrative scheme		Max mark
8. (continued)	-		•				•
Candidate C			Can	didate D			
$(m-4)^2-4(1)(2)$	2m-3)	• ¹ 🗸	(<i>m</i> -	$(-4)^2 - 4(1)(2)$	2m-3)	• ¹ 🗸	
$b^2 - 4ac = 0$							
$m^2 - 16m + 28 =$	0		m^2 -	-16m + 28 =	0	• ² ×	
m = 2, m = 14		• ³ ✓	<i>m</i> =	2, <i>m</i> = 14		•3 🗸	
$m^2 - 16m + 28 < 2 < m < 14$		• ² ✓ • ⁴ ✓	2 <1	<i>m</i> < 14		• ⁴ ✓ 2	
Candidate E - no	ot solving a quadr	atic					
$m - 4^2 - 4(1)(2m)$	(n-3) < 0	• ¹ x • ² ✓ • ³ x					
-7m-4 < 0							
$m > -\frac{4}{7}$		• ⁴ ✓ 2					

Question	Generic scheme	Illustrative scheme	Max mark
9.	Method 1 • ¹ apply $\log_a x + \log_a y = \log_a xy$	Method 1 • $\log_a(5 \times 80)$ stated or implied by • ³	3
	• ² apply $m \log_a x = \log_a x^m$	• ² $-\log_a 10^2$ stated or implied by • ³	
	• ³ apply $\log_a x - \log_a y = \log_a \frac{x}{y}$ and	• ³ $\log_a 4$	
	express in required form		
	Method 2	Method 2	
	• ¹ apply $m \log_a x = \log_a x^m$	• ¹ $-\log_a 10^2$ stated or implied by • ³	
	• ² apply $\log_a x - \log_a y = \log_a \frac{x}{y}$	• ² + $\log_a\left(\frac{80}{10^2}\right)$ stated or implied by • ³	
	• ³ apply $\log_a x + \log_a y = \log_a xy$ and express in required form	• ³ $\log_a 4$	
Notes:	•		
 Where an er Each line of observed res Where candi Where candi Do not pena Correct answ Where candi log_a 5+log_a 	For at the \bullet^1 or \bullet^2 stage leads to a non-invorking must be equivalent to the line sponses. Idates apply the laws of logarithms in the idates do not consider the '2', a maximalise the omission of the base of the logarithm over with no working, award 3/3. Idates form an invalid equation, \bullet^1 and $80-2\log_a 10$ on one side of the equation.	Integer value for k , \bullet^3 is still available. above within a valid strategy. See comme incorrect order see Candidates A and um of 1/3 is available. See Candidate C arithm. \bullet^2 may only be awarded for working with on; \bullet^3 is not available.	monly I B. .h
Commonly Obse	erved Responses:		
Candidate A $\log_a 5 + 2\log_a \left(\frac{8}{10}\right)$	$\left(\frac{0}{0}\right)$	Candidate B $\log_a 400 - 2\log_a 10$ $2\log_a \left(\frac{400}{2}\right)$	
$2\log_a\left(\frac{5\times80}{10}\right)$		$\frac{2 \log_a \left(10 \right)}{\log_a \left(40 \right)^2}$	
$\log_a (40)^2$		$\log_a 1600$	
$\log_a 1600$		Award 2/3	
Award 1/3	moving the 2		
$\log 5 + \log 80$	-2log 10		
$\log_a 5 + \log_a \frac{80}{10}$			
$\log_a 40$			
Award 1/3			

Question	Generic scheme	Illustrative scheme	Max mark					
10. (a)	• ¹ use 1 in synthetic division or in evaluation of quartic	• ¹ 1 2 3 -4 -3 2 2 or $2 \times (1)^4 + 3 \times (1)^3 - 4 \times (1)^2$ $-3 \times (1) + 2$	2					
	• ² complete division/evaluation ar interpret result	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Notes:	Notes:							
1. Communicat	tion at \bullet^2 must be consistent with wo	orking at that stage i.e. a candidate's work	ing					
must arrive	legitimately at 0 before \bullet^2 can be avec \bullet^2	varded.						
Z. ACCEPT any $f(1)$	0 = 0 so $(r = 1)$ is a factor?							
 'f(1)=0 so (x-1) is a factor' 'since remainder = 0, it is a factor' the '0' from any method linked to the word 'factor' by 'so', 'hence', ∴, →, ⇒ etc. 3. Do not accept any of the following for •²: double underlining the '0' or boxing the '0' without comment 'x=1 is a factor', ' is a root' the word 'factor' only, with no link. 								
Commonly Obse	erved Responses:							
Candidate A - g $2x^3$ x $2x^4$ -1 $-2x^3$	rid method $5x^3$ $\bullet^1 \checkmark$	Candidate B - grid method $2x^3$ x $2x^4$ $5x^3$ -1 $-2x^3$	√					
$\begin{array}{c c} & 2x^3 \\ x & 2x^4 \\ -1 & -2x^3 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\therefore (x-1)$ is a fac	ctor • ² 🗸	$\therefore (x-1)(2x^{2}+5x^{2}+x-2) = 2x^{2}+3x^{3}-4x^{2} - \frac{1}{2}x^{2} + \frac{1}{2}x^{2} - \frac{1}{2}x^{2}$	-3x+2					

	Questic	n	Generic scheme	Illustrative scheme	Max mark		
10.	(b)		• ³ identify cubic and attempt to factorise	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		
			• ⁴ find second factor	• ⁴ eg -1 2 5 1 -2 -2 -3 2 2 3 -2 0 leading to $(x+1)$ or -2 2 5 1 -2 -4 -2 2 2 1 -1 0 leading to $(x+2)$			
			 ⁵ identify quadratic ⁶ complete factorisation 	• ⁵ $2x^2 + 3x - 2$ or $2x^2 + x - 1$ • ⁶ $(x-1)(x+1)(2x-1)(x+2)$ stated explicitly			
Not	-05.						
4.	4 Ignore the appearance of $=0$?						
5.	Candid	ates v	who arrive at $(x-1)(x+1)(2x^2+3x-2)$	or $(x-1)(x+2)(2x^2+x-1)$ by using			
	algebra	aic lon	and division or by inspection gain $e^3 = e^4$	and e^5			
6.	Where	a can	didate only identifies additional factors	s from a quartic, only \bullet^4 is available.			

7. •³ and •⁴ may be awarded for applications of synthetic division even when previous trials contain errors. •⁵ and •⁶ are available.

Question Generic scheme			Illustrative scheme	Max mark				
10. (b) (continu	10. (b) (continued)							
Commonly Obse	rved Responses:							
Candidate C - gr (a) x $2x^{3}$	5x ² x -2 5x ³ x ² -2x	Canc (a)	didate D - grid method $2x^3$ $5x^2$ x -2 $2x^4$ $5x^3$ x^2 $-2x$					
-1 $-2x^3$	$-5x^2$ $-x$ 2	-1	$\begin{vmatrix} -2x^3 & -5x^2 & -x & 2 \end{vmatrix}$					
(b) $2x^2$ x $2x^3$ 	•3 ✓	(b) x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• ³ ✓				
• ³ is awarded for expression (whic (a)) AND the ter summing to the cubic respective	r evidence of the cubic h may be in the grid from part rms in the diagonal boxes second and third terms in the ly.	• ³ is expr (a)) sumr cubic	awarded for evidence of the cubic ession (which may be in the grid from AND the terms in the diagonal boxe ning to the second and third terms in c respectively.	n part s n the				
$\begin{array}{c c} & 2x^2 \\ x & 2x^3 \\ +1 & 2x^2 \end{array}$	$\begin{array}{c cc} 3x & -2 \\ 3x^2 & -2x \\ 3x & -2 \\ \end{array}$	x +2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•4 🗸				
$2x^2 + 3x - 2$	● ⁵ ✓	$2x^{2}$ -	+ <i>x</i> – 1	●5 ✓				
(x-1)(x+1)(2x	(x+2) • ⁶ ✓	(<i>x</i> -	(x+2)(x+1)(2x-1)	• ⁶ ✓				
Candidate E $\frac{1}{2}$ 2 5 1 2 6 $(x-\frac{1}{2})(2x^2+6x)$ $(2x-1)(x^2+3x-(x-1)(2x-1)(x))$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{Canc} \\ \frac{1}{2} \\ (x - \\ (x - \\ (x - \\ (x - \\ x - \\ x - \\ (x - \\ x - \\ x$	didate F $ \begin{array}{r} 2 & 5 & 1 & -2 \\ $	•4 🗸				

Question		on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ use compound angle formula	• $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
			• ² compare coefficients	• ² $k \cos a^\circ = 1, k \sin a^\circ = \sqrt{3}$ stated explicitly	
			• ³ process for k	• ³ $k=2$	
			 ⁴ process for a and express in required form 	• $2\cos(x-60)^{\circ}$	

Notes:

1. Accept $k(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ for \bullet^{1} . Treat $k\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.

- 2. Do not penalise the omission of degree signs.
- 3. $2\cos x^{\circ}\cos a^{\circ} + 2\sin x^{\circ}\sin a^{\circ}$ or $2(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. •² is not available for $k \cos x^{\circ} = 1, k \sin x^{\circ} = \sqrt{3}$, however •⁴ may still be gained- see Candidate E
- 5. •³ is only available for a single value of k, k > 0.
- 6. •³ is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without explicitly simplifying at any stage. •⁴ is still available.
- 7. •⁴ is not available for a value of a given in radians.
- 8. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k \cos(x-a)^\circ$.
- 9. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:						
Candidate A	• ¹ ^	Candidate B - inconsistency $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ} \bullet^{1} \checkmark$	Candidate C $\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ} \bullet^{1} \mathbf{x}$			
$2\cos a^\circ = 1$ $2\sin a^\circ = \sqrt{3}$	• ² ✓ • ³ ✓	$\cos a^{\circ} = 1$ $\sin a^{\circ} = \sqrt{3} \qquad \bullet^2 \mathbf{x}$	$\cos a^{\circ} = 1$ $\sin a^{\circ} = \sqrt{3}$ k = 2 $e^{2} \checkmark 2$ $e^{3} \checkmark$			
$\tan a^\circ = \sqrt{3}$ $a = 60$		$\tan a^\circ = \sqrt{3}$ $a = 60$	$\tan a^\circ = \sqrt{3}$ $a = 60$			
$2\cos(x-60)^\circ$	•4 🗸	$2\cos(x-60)^\circ$ $\bullet^3 \checkmark \bullet^4 \checkmark$	$2\cos(x-60)^\circ$ • ⁴ ×			

Question	Gener	ric scheme	Illu	istrative scheme	Max mark		
11. (a) (continued)							
Candidate D - e $k \cos x^{\circ} \cos a^{\circ} + k$	Frors at \bullet^2 $k \sin x^\circ \sin a^\circ \bullet^1 \checkmark$	Candidate E - use of $k \cos x^{\circ} \cos a^{\circ} + k \sin x$	$x \text{ at } \bullet^2$ $x^\circ \sin a^\circ \bullet^1 \checkmark$	Candidate F $k \sin A \cos B + k \cos A \sin B$	• ¹ x		
$k \cos a^\circ = \sqrt{3}$ $k \sin a^\circ = 1$	• ² 🗴	$k \cos x^{\circ} = 1$ $k \sin x^{\circ} = \sqrt{3}$	• ² x	$k \cos A = 1$ $k \sin A = \sqrt{3}$	• ² ¥		
$\tan a^\circ = \frac{1}{\sqrt{3}}$		$\tan x^\circ = \sqrt{3}$		$\tan A = \sqrt{3}$			
<i>a</i> = 30		<i>x</i> = 60					
$2\cos(x-30)^\circ$	● ³ ✓● ⁴ ✓ 1	$2\cos(x-60)^\circ$	• ³ • ⁴ 1	$2\cos(x-60)^\circ$ • ³	● ⁴ ✓ 1		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
11.	(b)		 ⁵ exactly two roots identifiable from graph 	• ⁵ (150,0) and (330,0)	3
			 ⁶ coordinates of exactly two turning points identifiable from graph 	• ⁶ (60,2) and (240,-2)	
			 ⁷ y-intercept and value of y at x = 360 identifiable from graph 	•7 1 4 3 2 1 3 4 -1 -2 -3 -4	
Note	s:				
10. •	⁵, • ⁶ a	nd • ⁷	are only available for attempting to	draw a "cosine" graph with a period of 36	0°.
11. lg	gnore	any p	bart of a graph drawn outwith $0 \le x$	≤ 360 .	
12. V	ertica	al mai late's	King is not applicable to \bullet° and \bullet° .	th the equation obtained in (a) see also	
C	andid	lates	G and H.		
14. F	or any	y inco	rrect horizontal translation of the g	raph of the wave function arrived at in par	t (a)
0	only ● ⁶	is av	ailable.		
Com	monly	/ Obs	erved Responses:		
Cand	lidate	G - i	ncorrect translation	Candidate H - incorrect equation	
(a)	2 c	os(x -	-60) $^{\circ}$ - correct equation	(a) $2\cos(x+60)^\circ$ - incorrect equation	
(b)	Inc	orrec	t translation:	(b) Sketch of $2\cos(x+60)^\circ$	
	Ske	etch o	$f 2\cos(x+60)^\circ$	all 3 marks available	
	onl	y ● ⁶ is	available	4 3 2 0 3 60 sto 120 180 180 10 240 270 300 330 380 -1 -2 -3 -4	

Q	Question		Generic scheme	Illustrative scheme	Max mark
12.			• ¹ write in differentiable form	• ¹ $12x^{\frac{1}{3}}$ stated or implied by • ²	4
			• ² differentiate	• ² $12 \times \frac{1}{3} \times x^{-\frac{2}{3}}$	
			• ³ solve for $a^{-\frac{2}{3}}$ or $a^{\frac{2}{3}}$	• ³ $a^{-\frac{2}{3}} = \frac{1}{4}$ or $a^{\frac{2}{3}} = 4$	
			• ⁴ solve for a	•4 $a = 8$	
Note	s:				•
1. • 2. V	² is on Vhere	ly ava cand	ailable for differentiating a term wit idates attempt to integrate or make	th a fractional index. I no attempt to differentiate, only •1 is ava	ilable.
3. A	ccept	$x^{-\frac{2}{3}}$:	$=\frac{1}{4}$ or $x^{\frac{2}{3}}=4$ at \bullet^3 . See Candidate	es A and B.	
4. • 5. D	⁴ is on)o not	ly ava pena	ailable where the expression at \bullet^2 is lise the inclusion of -8 at \bullet^4 .	s of the form $kx^{-\frac{m}{n}}$ where $m \neq 1$.	
Com	monly	^o Obse	erved Responses:		
Canc 	lidate	A - v	vorking in terms of x throughout $\bullet^1 \checkmark \bullet^2 \checkmark$	Candidate B ● ¹ ✓ ● ² ✓	
$x^{-\frac{2}{3}} =$	$=\frac{1}{4}$		•3 🗸	$x^{-\frac{2}{3}} = \frac{1}{4}$ • ³ ✓	
$x = \mathbf{\xi}$	3		• ⁴ x	(x = 8)	
				a = 8 • ⁴ ✓	
Canc	lidate	С		Candidate D - partly differentiated	
f(x)=12	$r^{\frac{3}{2}}$	• ¹ ×	$f(x) = 12x^{\frac{1}{3}} \qquad \bullet^1 \checkmark$	
f'(x)	c)=18	$x^{\frac{1}{2}}$	• ² ✓ 1	$f'(x) = 12 \times \frac{1}{3}x^{\frac{4}{3}} \qquad \bullet^2 x$	
$a^{\frac{1}{2}} =$	1 18		• ³ ✓ 1	$1 = 4a^{\frac{4}{3}}$	
a = -	1 324		• ⁴ ✓ 2	$\frac{1}{4} = a^{\frac{4}{3}} \qquad \bullet^3 \checkmark_1$	
	-			$a = \frac{1}{\sqrt{8}} \qquad \qquad \bullet^4 \checkmark_2$	

Question		on	Generic scheme	Illustrative scheme	Max mark
13.	(a)		• ¹ find midpoint of PQ	• ¹ (5,6)	4
			• ² find gradient of PQ	• ² -4 or $-\frac{8}{2}$	
			 ³ find perpendicular gradient ⁴ find equation of perpendicular bisector 	• ³ $\frac{1}{4}$ • ⁴ $4y = x + 19$	
Note	s:			-	
 T T f A C 	 •⁴ is only available as a consequence of using a perpendicular gradient and a mid-point. The gradient of the perpendicular bisector must appear in fully simplified form at •³ or •⁴ stage for •³ to be awarded. At •⁴ accept 4y-x=19, 4y-x-19=0, or any other rearrangement of the equation where the constant terms have been simplified. 				
	(b)		 ⁵ identify <i>x</i>-coordinate of centre ⁶ find <i>y</i>-coordinate of centre 	• ⁵ 9 • ⁶ 7	4
			• ⁷ find radius	• ⁷ √34	
			• ⁸ state equation of circle	• ⁸ $(x-9)^2 + (y-7)^2 = 34$	
Note	s:		$(0,2)^{n}$ as symptotic of $\sqrt{2}$		
 4. Do not accept "centre = (9,2)" as evidence of •³. 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available. •⁷ and •⁸ are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle. 7. Accept r² = 34 for •⁷. 8. (x-9)² + (y-7)² = (√34)² does not gain •⁸. 					
Commonly Observed Responses:					
Canc of P(Cent Radiu Equa	lidate 2 re = (' us = 5 tion:	9,6) (<i>x</i> -9	Porizontal line through midpoint $e^{5} \checkmark e^{6} \times$ $e^{7} \times$ $y^{2} + (y-6)^{2} = 25$ $e^{8} \times$	Candidate B - perpendicular bisector of P Perpendicular bisector of PR: $y = x - 2$ Centre = (9,7) $\cdot^5 \checkmark \cdot^6$	PR 2 ✓

[END OF MARKING INSTRUCTIONS]

2024 Mathematics

Higher - Paper 2

Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Question		on	Generic scheme		Illustrative scheme		Max mark
1.	(a)		• ¹ determine midpoint of AC		• ¹ (4,4)		3
			• ² determine gradient of median		• ² 2 or $\frac{10}{5}$		
			• ³ find equation of median		$\bullet^3 y = 2x - 4$		
Notes	s:						
1. e^{2} 2. e^{3} 3. At te 4. e^{3}	 •² is only available to candidates who use a midpoint to find a gradient. •³ is only available as a consequence of using a 'midpoint' of AC and the point B At •³ accept any arrangement of a candidate's equation where the constant terms have been simplified. •³ is not available as a consequence of using a perpendicular gradient. 						
Comr	nonly	v Obse	erved Responses:	1			
Cand	idate	$\mathbf{A} - \mathbf{p}$	erpendicular bisector of AC	Car	didate B - altitude through B		
$m_{\rm AC} =$	= <u>4</u>	(\neg, \neg) $\Rightarrow m_{\perp}$	$=\frac{7}{2}$ $\bullet^2 \times$	m _{AC}	$=-\frac{4}{7}$	• ¹ ^	
4y =	7 7x-	12	4 ● ³ ✓ 2	m_{\perp}	$=\frac{7}{4}$	• ² ×	
For o	ther r	oerner	ndicular bisectors award $0/3$	4 <i>y</i>	=7x-17	• ³ ✓ 2	
Cand	idato	C - m	edian through A	Car	didate D - median through C		
midpo	oint B	SC = (!)	$(5, -3)$ $\bullet^1 \times$	mid	point AB $(-2,1)$		• ¹ ×
m _{AM} =	$=-\frac{11}{8}$		• ² ✓ 1	т _{см}	$h_{1} = -\frac{1}{13}$	● ² ✓ 1	
8 <i>y</i> =	-11x	+ 31	• ³ ✓ 2	13y	y = -x + 11	• ³ ✓ 2	
	(b)		• ⁴ determine gradient of BC		• $4 \frac{6}{12}$		3
			• ⁵ determine gradient of L		• ⁵ $-\frac{12}{6}$		
			• ⁶ find equation of L		• $y = -2x + 22$		
Notes	s:						
5. ● ⁶	is oi	nly av	ailable as a consequence of using a	a per	pendicular gradient and C.		
6. Al	t•°a mplif	ccept ied.	any arrangement of a candidate's	equa	ation where the constant terms	have be	en
Commonly Observed Responses:							
Cand	idate	E - al	titude through C				
<i>т</i> _{АВ} =	= -7		• ⁴ ×				
$m_{\perp} =$	$\frac{1}{7}$		• ⁵ ✓ 1				
$y = \frac{1}{7}$, (x-'	11)	• ⁶ ✓ 1				

Question		on	Generic scheme		Illustrative scheme	Max mark
1.	(c)		• ⁷ determine <i>x</i> -coordinate		• ⁷ 6.5 or $\frac{13}{2}$	2
			• ⁸ determine <i>y</i> -coordinate		• ⁸ 9	
Note	es:					
7. F	or $\left(\frac{2}{4}\right)$	$\frac{6}{4},9$	award 1/2.			
Cano	lidate	F - r				
(a) 4	4v = 5	x – 19				
(b) $y = -2x + 22$						
د (c)	$c = \frac{107}{13}$	7 	● ⁷ ✓ 1			
$y = 5.6$ • ⁸ \checkmark_1			• ⁸ ✓ 1			

Question		n	Generic scheme	Illustrative scheme	Max mark
2.			• ¹ find <i>y</i> -coordinate	• ¹ 1	5
			\bullet^2 write in differentiable form	• ² $8x^{-3}$	
			• ³ differentiate	• $3 8 \times (-3) x^{-4}$	
			• ⁴ find gradient of tangent	• $\frac{3}{2}$	
			$ullet^5$ determine equation of tangent	• $3x + 2y = 8$	

Notes:

- 1. Only \bullet^1 and \bullet^2 are available to candidates who integrate. However, see Candidates E and F.
- 2. $8 \times (-3) x^{-4}$ without previous working gains \bullet^2 and \bullet^3 .
- 3. \bullet^3 is only available for differentiating a negative power. \bullet^4 and \bullet^5 are still available.

4. •⁴ is not available for $y = -\frac{3}{2}$. However, where $-\frac{3}{2}$ is then used as the gradient of the straight line, •⁴ may be awarded - see Candidates A, B and C.

- 5. •⁵ is only available where candidates attempt to find the gradient by substituting into their derivative.
- 6. \bullet^5 is not available as a consequence of using a perpendicular gradient.
- 7. Where x = 2 has not been used to determine the *y*-coordinate, \bullet^5 is not available.

Commonly Observed Responses:			
Candidate A - incorrect notation		Candidate B - use of values in	equation
y = 1	• ¹ ✓ - BoD	y = 1	• ¹ ✓ - BoD
$y = 8x^{-3}$	• ² 🗸	$y = 8x^{-3}$	•2 🗸
$y = -24x^{-4}$	• 3 🗸	$\frac{dy}{dt} = 8 \times (-3) x^{-4}$	• 3 🗸
$y = -\frac{3}{2}1$	• ⁴ ✓ - BoD	$\frac{dx}{dy} = -\frac{3}{3}$	•4 🗸
3x + 2y = 8	•5 🗸	dx = 2	
		$y = -\frac{3}{2}$	
		3x+2y=8	•5 🗸
Candidate C - incorrect notation		Candidate D	
y=1	•¹ ✓ - BoD	y = 1	•1 🗸
$y = 8x^{-3}$	● ² ✓	$y = 8x^{-3}$	• ² ✓
$\frac{dy}{dx} = 8 \times (-3) x^{-4}$	• ³ ✓	$\frac{dy}{dx} = 8 \times (-3) x^{-4} = 0$	• 3 🗸
$y = -\frac{3}{2}$	• ⁴ ×	$8 \times (-3)(2)^{-4} = 0$	
Evidence for a ⁴ would need to	appear in the	$m = -\frac{3}{2}$	• ⁴ ×
equation of the line	appear in the	3x + 2y = 8	• ⁵ ✓ 1
-			

Question	Generic scheme	Illustrative scheme	e Max mark
2. (continued)			
Candidate E - ir	ntegrating in part C	andidate F - appearance of	+c
<i>y</i> = 1	• ¹ 🗸 🔰	=1	• ¹ 🗸
$y = 8x^{-3}$	• ² ✓	$x = 8x^{-3}$	• ² ✓
$\frac{dy}{dx} = -24x^{-2}$	$\bullet^3 \times \frac{c}{c}$	$\frac{y}{y} = -24x^{-4} + c$	• ³ × • ⁴ ×
$\frac{dy}{dx} = -6$	• ⁴ ✓ 1		• ⁵ ×
y = -6x + 13	• ⁵ ✓ 1		

Question		on	Generic scheme	Illustrative scheme	Max mark
3.	(a)		• ¹ find \overrightarrow{ED}	$\bullet^1 \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}$	2
			• ² find \overrightarrow{EF}		
Note	es:		-		
1. Fo 2. A	or can ccept	didate vecto	es who find both \overrightarrow{DE} and \overrightarrow{FE} correctly rs written horizontally.	r, award 1/2.	
Com	monly	/ Obse	erved Responses:		
	1				
	(b)	(i)	• ³ evaluate $\overrightarrow{ED}.\overrightarrow{EF}$	• ³ 16	1
		(ii)	• ⁴ evaluate \overrightarrow{ED}	• ⁴ \sqrt{53}	4
			● ⁵ evaluate EF	● ⁵ √14	
			• ⁶ substitute into formula for scalar product	• ⁶ $\cos \text{DEF} = \frac{16}{\sqrt{53} \times \sqrt{14}}$ or $\sqrt{53} \times \sqrt{14} \times \cos \text{DEF} = 16$	

•⁷ 54.028...° or 0.942... radians

 \bullet^7 calculate angle

Question	Generic scheme	Illustrative sc	heme Max mark				
3. (b) (continue	3. (b) (continued)						
Notes:							
 3. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. For example accept √1² + 4² + 6² = √53 or √1² + -4² + 6² = √53 for •⁴. However, do not accept √1² - 4² + 6² = √53 for •⁴. 4. •⁶ is not available to candidates who simply state the formula cos θ = ED.EF/ED EF . However, cos θ = 16/√53 × √14 and √53 × √14 × cos θ = 16 are acceptable for •⁶. 5. Accept correct answers rounded to 54° or 0.9 radians (or 60 gradians). 6. Do not penalise the omission or incorrect use of units. 7. •⁷ is only available as a result of using a valid strategy. 8. •⁷ is only available for a single angle. 9. For a correct answer with no working award 0/4. 							
Commonly Obse	erved Responses:						
Candidate A - p $ \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 18 \end{pmatrix} $	oor notation $\begin{pmatrix} 4 \\ 3 \end{pmatrix} = 16$ $\bullet^3 \times$	Candidate B - insufficient communication $ \vec{ED} = \sqrt{53}$ •4 $ \vec{EF} = \sqrt{14}$ •5 $\frac{16}{\sqrt{53} \times \sqrt{14}}$ •6 54.028° or 0.942 radians•7					
$\begin{vmatrix} Candidate C - B \\ \left \overrightarrow{OF} \right = \sqrt{14} \end{vmatrix}$	EWARE • ⁵ ×						

Question		Generic scheme	Illustrative scheme	Max mark	
4.	(a)	• ¹ identify <i>x</i> -coordinate	• ¹ 3	2	
		• ² identify <i>y</i> -coordinate	• ² 5		
Note	es:				
Com	monly C	bserved Responses:			
	(b)	• ³ identify roots	• ³ "cubic" with roots at -1 and 2	3	
		 ⁴ interpret point of inflection ⁵ identify orientation and complete cubic curve 	 "cubic" with turning point at (2,0) cubic with maximum turning 		
			point at (2,0)		
Note	es:				
1. N 2. W a' 3. D	ote that /here a c ward 0/3 o not pe	the position of the minimum turning p andidate has not drawn a cubic curve . However see Candidate D. nalise the appearance of an additional	point of $f'(x)$ is not being assessed. or their graph does not extend outwith $-1 \le$ root outwith $-1 \le x \le 2$ (on a cubic curve) a	$\leq x \leq 2$ at \bullet^3 .	
Com	imonly C	bserved Responses:			
Candidate A - $-f'(x)$			Candidate B		
			y -1 -1 x x		

Question	Generic scheme	Illustrative scheme Ma mar		
4. (b) (continue	ed)			
Candidate C		Indidate D - left derivative ≠ right derivat (2,0) y 2 x x x	tive	

Q	uestic	n	Generic scheme		Illustrative scheme	Max mark
5.			• ¹ integrate		$\bullet^1 -\frac{1}{5}\cos 5x$	3
			• ² substitute limits		$\bullet^{2}\left(-\frac{1}{5}\cos\left(5\times\frac{\pi}{7}\right)\right)-\left(-\frac{1}{5}\cos\left(5\times0\right)\right)$	
			• ³ evaluate integral		• ³ 0.3246	
Note	s:					
 Fo in' Do in' Ac 4. •³ 	 For candidates who differentiate throughout, make no attempt to integrate, or use another invalid approach (for example cos 5x²) award 0/3. Do not penalise the inclusion of '+c' or the continued appearance of the integral sign after integrating. Accept (-1/5 cos 5(π/7))-(-1/5 cos 5(0)) for •². •³ is only available where candidates have considered both limits within a trigonometric function. 					
Com	nonly	[,] Obse	erved Responses:			
Cand -cos -cos	idate 5x $\left(\frac{5\pi}{7}\right)$	A - ir −(−c	$\begin{array}{c} \bullet^{1} \times \\ \bullet^{2} \checkmark_{1} \end{array}$	Car inte cos	didate B - insufficient evidence of egration $5x \qquad \bullet^1 \times (\frac{5\pi}{2}) - (\cos(5 \times 0)) \qquad \bullet^2 \checkmark_2$	
1.623	8		● ³ ✓ ₁	-1.0	623 ● ³ ✓ ₂	
Cand integ	idate ratio	C - ir n	sufficient evidence of	Candidate D - working in degrees before integrating		
$\frac{1}{5}\sin^{1}$ $\frac{1}{5}\sin^{1}$ 0.156	$\frac{5x}{7} - \frac{1}{5}$	sin 0	$\bullet^1 \times \bullet^2 \checkmark_2 \bullet^3 \checkmark_2$	$\begin{bmatrix} 25.7.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\int_{-\infty}^{\infty} \sin 5x dx \qquad \qquad \bullet^{1} \times \\ \cos 5x \qquad \qquad \\ \int_{-\infty}^{\infty} \cos 128 57 \qquad -\left(-\frac{1}{\cos 0}\right) \qquad \bullet^{2} \times 1$	
				0.3	$5^{-1} (5^{-1}) (5^$	

Question		n	Generic scheme	Illustrative scheme	Max mark
6.			Method 1	Method 1	5
			• ¹ state linear equation	• $\log_5 y = 3\log_5 x - 2$	
			• ² introduce logs	• ² $\log_5 y = 3\log_5 x - 2\log_5 5$	
			• ³ use laws of logs	• $\log_5 y = \log_5 x^3 - \log_5 5^2$	
			• ⁴ use laws of logs	• $\log_5 y = \log_5 \frac{x^2}{5^2}$	
			• ⁵ state a and b	• ⁵ $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$	
			Method 2	Method 2	5
			• ¹ state linear equation	• $\log_5 y = 3\log_5 x - 2$	
			• ² use laws of logs	• $\log_5 y = \log_5 x^3 - 2$	
			• ³ use laws of logs	$\bullet^3 \log_5 \frac{y}{x^3} = -2$	
			• ⁴ use laws of logs	$\bullet^4 \frac{y}{x^3} = 5^{-2}$	
			• ⁵ state a and b	• ⁵ $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$	
			Method 3	Method 3 The equations at • ¹ , • ² and • ³ must be stated explicitly	5
			• ¹ introduce logs to $y = ax^b$	• $\log_5 y = \log_5 ax^b$	
			• ² use laws of logs	• ² $\log_5 y = b \log_5 x + \log_5 a$	
			• ³ interpret intercept	• $\log_5 a = -2$	
			• ⁴ use laws of logs	$\bullet^4 a = \frac{1}{25}$	
			● ⁵ interpret gradient	• ⁵ $b=3$	

Question	Generic scheme	•	Illustr	ative scheme	Max mark		
6. (continued)							
Notes							
 In any method, marks may only be awarded within a valid strategy using y = ax^b. For example, see Candidates C and D. Markers must identify the method which best matches the candidate's approach; markers must not mix and match between methods. Penalise the omission of base 5 at most once in any method. Where candidates use an incorrect base then only •² and •³ are available (in any method). Do not accept a = 5⁻². In Method 3, do not accept m = 3 or gradient = 3 for •⁵. Do not penalise candidates who score out "log" from equations of the form log₅ m = log₅ n. 							
Commonly Obse	erved Responses						
Candidate A - m in Method 3	hissing equations at \bullet^1 , \bullet^2 ar	nd \bullet^3 Can	didate B - no w 1	vorking - Method 3			
$a = \frac{1}{2}$	4	b =	25	●			
$u = \frac{1}{25}$	-5 (a = 1	3	• ⁵ ×			
b=3	• * ¥						
Candidate C - M	ethod 2	Can	didate D - Meth	nod 2			
y = 3x - 2		log	$y = 3\log_5 x - 2$	•' 🗸			
$\log_5 y = 3\log_5 x -$	•2 • ¹ ✓	log	$y = \log_5 x^3 - 2$	●² ✓			
$\log_5 y = \log_5 x^3 -$	• ² √	$\frac{y}{3}$	=-2	$\bullet^3 \mathbf{x} \bullet^4 \mathbf{x} \bullet^5 \mathbf{x}$			
$y = x^3 - 2$	$\bullet^3 \times \bullet^4 \times \bullet^5$	$\overline{\mathbf{x}}$ \mathbf{x}					
Candidate E - us	se of coordinate pairs						
$\log_5 x = 4$ and 10	$\log_5 y = 10$ • •						
$x = 5^{\circ}$ and $y = 5^{\circ}$	5 ¹⁰ ● ² ✓						
$\log_5 x = 0$, $\log_5 x = 0$	<i>y</i> = -2						
$\Rightarrow x=1, y=5^{-2}$	●3 ✓						
$5^{-2} = a \times 1^b \Longrightarrow a =$	$=\frac{1}{25}$ • ⁴ ✓						
$5^{10} = 5^{-2} \times 5^{4b} \Longrightarrow$	-2+4b=10						
$\Rightarrow b = 3$	● ⁵ ✓						
Candidates	may use $(0, -2)$ for \bullet^1 and \bullet	2					
	and $(4,10)$ for \bullet^3 .						

Question			Generic scheme		Illustrative scheme	Max mark	
7.				Method 1		Method 1	5
			• ¹	integrate using 'upper' – 'lower'	• ¹	$\int \left(\left(6 + 4x - 2x^2 \right) - \left(x^3 - 6x^2 + 11x \right) \right) dx$	
			•2	identify limits	•2	$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) - \left(x^{3} - 6x^{2} + 11x \right) \right) dx$	
			• ³	integrate	• ³	$6x - \frac{7}{2}x^2 + \frac{4}{3}x^3 - \frac{1}{4}x^4$	
			•4	substitute limits	• ⁴	$\left(6(2)-\frac{7}{2}(2)^{2}+\frac{4}{3}(2)^{3}-\frac{1}{4}(2)^{4}\right)-0$	
			• ⁵	evaluate area	•5	$\frac{14}{3}$ (units ²)	
				Method 2		Method 2	
			• ¹	know to integrate between appropriate limits for both equations	• ¹	$\int_{0}^{2} \dots dx \text{ and } \int_{0}^{2} \dots dx$	
			• ²	integrate both functions	• ²	$6x + \frac{4x^2}{2} - \frac{2x^3}{3}$ and $\frac{x^4}{4} - \frac{6x^3}{3} + \frac{11x^2}{2}$	
			•3	substitute limits into both expressions	• ³	$\left(6(2) + \frac{4(2)^2}{2} - \frac{2(2)^3}{3}\right) - 0$ and	
						$\left(\frac{(2)^4}{4} - \frac{6(2)^3}{3} + \frac{11(2)^2}{2}\right) - 0$	
			•4	evaluate both integrals	•4	$\frac{44}{3}$ and 10	
			• ⁵	evidence of subtracting areas	•5	$\frac{14}{3}$ (units ²)	

(Question	Generic sche	me	Illustrative scheme	Max mark	
7. (7. (continued)					
Not	es:					
1.	Correct answer with no working - award 1/5.					
2.	Do not pena	lise lack of ' dx ' at \bullet^1	in Method 1			
3.	In Method 1	, limits and ' dx ' must	appear by	the \bullet^2 stage for \bullet^2 to be awarded and in Me	thod 2 by	
4	the •' stage	for • to be awarded	f brackata a	t al stage as had form only if the correct in	togrand	
4.	is obtained	See Candidates C an	d D	• stage as bad form only if the correct if	legrand	
5.	Where a car	ndidate differentiates	s one or mor	e terms, or fails to integrate, no further m	arks are	
	available.			, , ,		
6.	In Method 1	, accept unsimplified	expressions	s such as $6x + \frac{4x^2}{2} - \frac{2x^3}{3} - \frac{x^4}{4} + \frac{6x^3}{3} - \frac{11x^2}{2}$ at	• ³ .	
7.	Do not pena	alise the inclusion of '	+c'.			
8.	Do not pena	alise the continued ap	pearance of	f the integral sign or dx after integrating.		
9.	● ⁵ is not ava	ailable where solution	is include st	atements such as $-\frac{14}{3} = \frac{14}{3}$ square units	. See	
	Candidates	A and B.				
10.	In Method 1	, where a candidate $\boldsymbol{\boldsymbol{u}}$	uses an inva	lid strategy the only marks available are $ullet^3$	for	
	integrating	a polynomial with at	least four te	erms (of different degree) and \bullet^4 for substi	uting	
11	the limits of	f 0 and 2 into the result populies condidates	ulting expre	ssion. However, see Candidate E.	place of	
11.	AL •, do no 0^4 c:			tice powers of 0. For example writing 0 in		
	0 . Similarly	y, do not penalise car	ididates wri	ting 0 in place of $6(0)$. However, candidat	es who	
	write 0^3 in	place of 0^4 or $2(0)$ ir	ו place of 6	(0) do not gain \bullet^4 .		
Cor	nmonly Obse	erved Responses:				
Can	ndidate A - sv	witched limits		Candidate B - 'lower' - 'upper'		
ĵ($(6+4x-2x^2)$	$-(x^3-6x^2+11x))dx$	● ² ✓	$\int_{-\infty}^{2} \left(\left(x^{3} - 6x^{2} + 11x \right) - \left(6 + 4x - 2x^{2} \right) \right) dx$	• ² ✓	
2	````	· //				
	7 4	4		$\int x^3 - 4x^2 + 7x - 6 dx$		
= 6	$x - \frac{7}{2}x^2 + \frac{4}{2}x$	$x^{3} - \frac{1}{4}x^{4}$	● ³ ✓	J 0		
	Z 3	4		$-\frac{1}{2}r^{4}-\frac{4}{2}r^{3}+\frac{7}{2}r^{2}$ 6r	3 √	
	(7	(2, 4, (3, 1, (4)))	1 ($\begin{bmatrix} -4 & 3 & -3 \\ -4 & 3 & 2 \end{bmatrix}$	•	
=0	$-\left(6(2) - \frac{7}{2}(2) \right)$	$\left(2^{2}+\frac{1}{3}(2)^{3}-\frac{1}{4}(2)^{4}\right)$	●	$\left(1_{(2)}^{4} + 4_{(2)}^{3} + 7_{(2)}^{2} + \epsilon_{(2)}^{2}\right)$ (0)	4	
	< -	· · · <i>)</i>		$\left[\left(\frac{-1}{4}(2) - \frac{-1}{3}(2) + \frac{-1}{2}(2) - 6(2)\right)^{-1}(0)\right]$	• •	
	14			14		
= -	3			$=-\frac{1}{3}$		
_ 1	4		_1 <u>x</u> _5 <u>y</u>	14	• ⁵	
	3		••••	\therefore Area = $\frac{1}{3}$	• • •	

Question	Generic scheme	Illustrative scheme	Max mark
7. (continued)			
Candidate C - n	nissing brackets	Candidate D - missing brackets	
$\int_{0}^{5} 6 + 4x - 2x^{2} - x$	$x^3 - 6x^2 + 11x dx$	$\int_{0}^{5} 6 + 4x - 2x^{2} - x^{3} - 6x^{2} + 11x dx \qquad \bullet^{1} =$	× • ² √ 1
$\int_{0}^{1} 6 - 7x + 4x^2 - x$	$a^3 dx \qquad e^1 \checkmark e^2 \checkmark$	$\int_{0}^{1} 6 + 15x - 8x^2 - x^3 dx$	
		$6x + \frac{15}{2}x^2 - \frac{8}{3}x^3 - \frac{1}{4}x^4$	• ³ ✓ 1
		$\left(6(2) + \frac{15}{2}(2)^2 - \frac{8}{3}(2)^3 - \frac{1}{4}(2)^4\right) - (0)$	• ⁴ ✓ 1
		$\frac{50}{3}$	● ⁵ ✓ 1
Candidate E - '	upper' + 'lower'	Candidate F - incorrect substitution	
$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) \right)$	$+(x^3-6x^2+11x))dx$ $\bullet^1 \times \bullet^2$	✓ 1 $\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) - \left(x^{3} - 6x^{2} + 11x \right) \right) dx$ • ¹	¹ ✓ ● ² ✓
$6x + \frac{15}{2}x^2 - \frac{8}{3}x^3$	$x^3 + \frac{1}{4}x^4$ e^3	✓ 1 $\left(6x + 2x^2 - \frac{2}{3}x^3 \right) - \left(\frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 \right)$	• ³ 🗸
$\left \left(6(2) + \frac{15}{2}(2)^2 \right) \right $	$-\frac{8}{3}(2)^{3}+\frac{1}{4}(2)^{4}-0$ • ⁴	✓ 1 $\left[\left(6(2) + 2(2)^2 - \frac{2}{3}(2)^3 \right) - \left(\frac{1}{4}(0)^4 - 2(0)^3 + \frac{11}{2}(0)^4 - 2(0)^3 + \frac{11}{2}(0)^4 - \frac{1}{3}(0)^4 - \frac{1}{3}(0)^$	$\Big)^2 \Big) \bullet^4 \mathbf{x}$
$\left \frac{74}{3} \right $	•5	$\checkmark_1 \left \frac{44}{3} \right $	• ⁵ ✓ 2

Question		on	Generic scheme		Illustrative scheme	Max mark
8.	(a)		• ¹ interpret notation		• $f(x+1)$ or $2g(x)^2 - 18$	2
			• ² state expression for $f(g(x))$		• ² $2(x+1)^2 - 18$	
Note	es:					
1.	For 2($(x+1)^2$	² -18 without working, award botl	h ●¹ a	nd \bullet^2 .	
Com	monly	v Obse	erved Responses:			
Cano	lidate	A - g	(f(x))	Car	ndidate B - beware of two "attempts"	
$2x^{2}$ -	-17		• ¹ × • ² √ ₁	f($g(x)) = 2x^2 - 18 \qquad \qquad \bullet^1 \times \bullet^2$	×
				f($(x+1) = 2(x+1)^2 - 18$	
	(b)		• ³ apply condition		• $3 2(x+1)^2 - 18 = 0$	2
			• ⁴ state values of x		• ⁴ -4 and 2	
Note	es:					
2.	Worki	ng at •	³ must be consistent with working	at •	·	
3.	Accep	t 2(x	$(+1)^2 - 18 \neq 0$ for \bullet^3 only when $x =$	=4	and $x = 2$ are stated explicitly at • ⁴ . S	ee
	Candio	late H				
4.	•⁴ is oı For su	nly av	ailable for finding the roots of a que	uadra ark is	itic.	
J.	i Oi Su	usequ	ent incorrect working, the rinat in		Shot available. For example $-4 < x < 2$	•
Com	monly	v Obse	rved Responses:	1		
Cano Part	lidate (a)	C - e	xpanding brackets in (a)	Car Par	ndidate D - expanding brackets in (a) t (a)	
f(g	(x) =	$= 2(x \cdot$	$(+1)^2 - 18$ $\bullet^1 \checkmark \bullet^2 \checkmark$	f($g(x)) = 2(x+1)^2 - 18$ • ¹ \checkmark •	2 🗸
f(g	(x) =	$= 2x^2 +$	4x - 16	f ($g(x) = 2x^2 - 16$	
Part	(b)			Par	t (b)	
$2x^{2}$	+4x -	16 = C	• ³ ✓	$2x^2$	-16 = 0 • ³ ×	
<i>x</i> = -	-4 an	d $x =$	2 ● ⁴ ✓	<i>x</i> =	$\pm \sqrt{8}$ • ⁴ \checkmark 1	
Cano	lidate	E - g	(f(x))	Car	ndidate F - equivalent condition	
Part	(a)	0				
f(g	(x) =	= 2 x ² –	$\bullet^1 \times \bullet^2 \checkmark_1$	2()	$(x+1)^2 = 18$ $\bullet^3 \checkmark$	
Part (b)						
$2x^2 - 17 = 0$ • ³ \checkmark_1						
$x = \pm \sqrt{\frac{17}{2}} \qquad \qquad \bullet^4 \checkmark_1$						
Candidate G - use of \pm				Car	ndidate H - use of ≠	
2(x	$(+1)^{2}$ –	18 ≠ C	• ³ ×	2(2	$(r+1)^2 - 18 \neq 0$	
$x \neq -$	-4, x	≠2	• ⁴ ✓ 1	<i>x</i> ≠	$x = -4, x \neq 2$	
				x = 1	x = -4, $x = 2$	• ³ 🗸

Question		on	Generic scheme	Illustrative scheme		Max mark
9.	(a)		• ¹ differentiate two non-constant terms	:	• $eg x^2 - 2x$	4
			• ² complete derivative and equat to 0	e	• ² $x^2 - 2x - 3 = 0$	
			• ³ find <i>x</i> -coordinates		$\bullet^3 \bullet^4$ $\bullet^3 -1, 3$	
			• ⁴ find <i>y</i> -coordinates		• $\frac{8}{3}$, -8	
Note	s:					1
1. For 2. \bullet^2 Ca 3. \bullet^3 4. \bullet^3	 For a numerical approach, award 0/4. •² is only available if '= 0' appears at the •² stage or in working leading to •³. However, see Candidate A. •³ is only available for solving a quadratic equation. •³ and •⁴ may be awarded vertically. 					9
Com	monly	0bse	erved Responses:			
Cano	lidate	Α		Can	didate B - derivative never equated t	o 0
Stati	onary	point	s when $\frac{dy}{dx} = 0$	x^2 (x-	$-2x-3$ $\bullet^1 \checkmark \bullet^2 \land$ +1)(x-3)	
$\frac{dy}{dx} =$	$x^{2}-2$	2x-3	• ¹ ✓ • ² ✓	x =	-1, 3 ● ³ ✓ ₁	
$\left \frac{dy}{dx} \right =$	(x+1)	(x-x)	3)	<i>y</i> =	$\frac{8}{3}, -8$ $\bullet^4 \checkmark$	
<i>x</i> = -	-1, 3		•3 🗸			
<i>y</i> = -	<u>8</u> , −8		•4 🗸			
	(b)		• ⁵ evaluate y at $x = 6$		• ⁵ 19	2
			• ⁶ state greatest and least values		• ⁶ greatest = 19 and least = -8	
Notes:					L	
5. 'C	ireate	st (6,	19); least (3,-8)' does not gain •	⁶ .		
6. Where $x = -1$ was not identified as a stationary point in part (a). v must also be evaluated at						
x = -1 to gain • ⁶ .						
7. • ⁶ is not available for using y at a value of x, obtained at • ³ stage, which lies outwith the interval						
$-1 \le x \le 6$. 8. • ⁶ is only available where candidates have attempted to evaluate y at $x = 6$.						
Com	monly	0bse	erved Responses:			
1						

Q	Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)		• ¹ state centre	•1 (-9,1)	2
			• ² calculate radius	• ² $\sqrt{90}$ or $3\sqrt{10}$ or 9.48	
Note	es:				
1. <i>I</i>	Accept	x = -	-9, $y = 1$ for • ¹ .		
2. C	o not	accep	ot ' $g = -9, f = 1$ ' or ' $-9, 1$ ' for \bullet^1 .		
3. C)o not	penal	ise candidates who treat negative	signs with a lack of rigour when calculating	the
r	adius.	For e	xample accept $\sqrt{9^2 + -1^2 + 8} = \sqrt{90}$	0 or $\sqrt{9^2 + 1^2 + 8} = \sqrt{90}$ or $\sqrt{-9^2 + 1^2 + 8} = \sqrt{90}$	90 for
•	² . Ho	wever	r, do not accept $\sqrt{9^2 - 1^2 + 8} = \sqrt{90}$	for • ² .	
Com	monly	v Obse	erved Responses:		
	(b)		• ³ determine the distance betwee	en \bullet^3 eg $\sqrt{90} - \sqrt{10}$	2
			the centres and subtract to fin	da	
			radius of C		
			\bullet^4 determine equation of C_2	• $(x+6)^2 + y^2 = 40$	
Note	es:				
4. C)o not	penal	ise the use of decimals.		
5. 1	he dis	tance	between the centres, and the rad	us of C_2 must be consistent with the sizes of	of the
C	ircles	in the	e original diagram ($d < r_{C_2} < r_{C_1}$).		
6. V	Vhere	a can	didate uses an incorrect radius with	nout supporting working, \bullet^4 is not available.	
6		01			
Com	monly	V UDSE	erved Responses:		
Part	ildate (a)	A - 10	Dilow-through marking	Candidate B - using line through centres	
r = -	√ 74		• ² ×	Equation of radius: $3y = -x - 6$	
Part	(b)			$(-3y-6)^2 + y^2 + 18(-3y-6) - 2y - 8 = 0$	
d = -	√10 ,			$10v^2 - 20v - 80 = 0$	
radi	$us = \sqrt{2}$	74 – √ 2	√10 • ³ ✓ ₁	$v = 4 \qquad v = -2$	
(x+	6) [*] + j	$v^{2} = 5$.44 ²	r = -18 $r = 0$	
(x+	$(6)^{2} + y$	$v^2 = 2^{-1}$	9.59 (or $84 - 4\sqrt{185}$) • ⁴ \checkmark_1	$\gamma = -1$ $\gamma = -2$ Radius = distance between (-6.0) and (02)	2)
	,			Radius = $\sqrt{40}$	-, ● ³ ✓
				$(r+6)^2 + v^2 = 40$	4 √
				(x + y) + y = 10	- •

Question		on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		•1 state number of vehicles	• ¹ 6.8 million	1
Note	s:	L			
1. A	ccept	6.8 0	r $N = 6.8$ million for \bullet^1 .		
Com	monly	v Obse	erved Responses:		
	(b)		• ² substitute for N and t	• ² $125 = 6.8e^{10k}$ stated or implied by • ³	4
			• ³ process equation	• ³ $\frac{125}{6.8} = e^{10k}$	
			• ⁴ express in logarithmic form	• ⁴ $\log_e\left(\frac{125}{6.8}\right) = 10k$	
			• ⁵ solve for k	• ⁵ 0.2911	
Note	s:	L			
 A D ir 4. • 5. A 6. A 7. A 8. T 9. F 1 	 Accept answers which round to 0.29. Do not penalise rounding or transcription errors (which are correct to 2 significant figures) in intermediate calculations. •³ may be assumed by •⁴. Any base may be used at •⁴ stage. See Candidate A. At •⁴ all exponentials must be processed. Accept log_e 125/6.8 = 10k log_e e for •⁴. The calculation at •⁵ must follow from the valid use of exponentials and logarithms at •³ and •⁴. For candidates with no working, or who adopt an iterative approach to arrive at k = 0.29, award 1/4. However, if in the iterations N is calculated for k = 0.295 and k = 0.285, then award 4/4. 				
Com	monly	0bse	erved Responses:		
Candidate A - use of alternative base $125 = 6.8e^{10k}$ $e^2 \checkmark$ $\frac{125}{6.8} = e^{10k}$ $e^3 \checkmark$ $\log_{10}\left(\frac{125}{6.8}\right) = 10k \log_{10}e$ $e^4 \checkmark$ $k = 0.2911$ $e^5 \checkmark$				Candidate B - missing lines of working $125 = 6.8e^{10k}$ $k = 0.2911$ $\bullet^3 \wedge \bullet^4 \wedge \bullet^5$	(
Candidate C - errors in substitution 125000000 = $6.8e^{10k}$ $e^2 \times \frac{125000000}{6.8} = e^{10k}$ $e^3 \checkmark_1$ 16.726 = $10k$ $e^4 \checkmark_1$ $k = 1.6726$ $e^5 \checkmark_1$					

Question	Generic scheme	Illustrative scheme	Max mark
12.	• ¹ substitute appropriate double angle formula	• ¹ 2(2 sin x° cos x°) - sin ² x° (=0)	5
	• ² factorise	• ² $\sin x^{\circ} (4\cos x^{\circ} - \sin x^{\circ}) = 0$	
	• ³ solve for $\tan x^{\circ}$	• ³ $\tan x^\circ = 4$ (since $x = 90$, 270 are not solutions)	
		• ⁴ • ⁵	1
	• ⁴ solve $\tan x^\circ = 4$	•4 76, 256	l
	• ⁵ solve $\sin x^\circ = 0$	• ⁵ 0, 180	
Notes:			
 •¹ is still available to candidates who correctly substitute for sin² x in addition to sin 2x. Substituting 2 sin A cos A for sin 2x° at the •¹ stage should be treated as bad form provided the equation is written in terms of x at the •² stage. Otherwise, •¹ is not available. '=0' must appear by the •² stage for •² to be awarded. Award •² for 'S(4C-S)=0' only where sin x°=0 and 4 cos x°-sin x°=0 appear. Do not penalise the omission of degree signs. At •³ stage, candidates are not required to check that 90 and 270 are not solutions before dividing by cos x°. Where candidates have divided by sin x at the •² stage without considering sin x = 0, •³ and •⁴ are still available. 			
7. At \bullet^3 stage	e, candidates may use the wave functior	h and arrive at $\sqrt{17}\cos(x+14)^\circ = 0$, or	an
 equivalent wave form, instead of tan x° = 4. e⁴ is only available where the working at the e³ stage is of equivalent difficulty to reaching tan x° = 4. e⁵ is not available where sin x = 0 comes from an invalid strategy. For candidates who work only in radians, e⁵ is not available. e⁴ and e⁵ may be awarded vertically. See also Candidate B. Do not penalise solutions outwith 0 ≤ x < 360. 			

Commonly Observed Responses:

Candidate A - working in radians :	• ¹ • • ² •	Candidate B - partial solutions 2($2\sin x^{\circ}\cos x^{\circ}$) - $\sin^2 x^{\circ} = 0$		• ¹ 🗸
$\tan x^\circ = 4$ 1.326, 4.468 $0, \pi$	$\bullet^{3} \checkmark$ $\bullet^{4} \checkmark_{1}$ $\bullet^{5} \checkmark_{2}$	$\sin x^{\circ} (4\cos x^{\circ} - \sin x^{\circ}) = 0$ $\sin x^{\circ} = 0$ x = 180 $\tan x^{\circ} = 4$ x = 76 $\bullet^{5} \uparrow$	• ² ✓	●4 ✓

Question		n	Generic scheme	Illustrative scheme	Max mark
13.			• ¹ state repeated factor	• ¹ $(x-3)^2()()$	3
			• ² state non-repeated linear facto	• ² $()^2 (x+1)(x-5)$	
			• ³ calculate <i>k</i> and express in required form	• ³ $f(x) = \frac{1}{5}(x-3)^2(x+1)(x-5)$	
Note	s:				
1. Do	not p	enali	se the omission of $f(x) =$ or the ir	clusion of $y = .$	
2. Ac	cept .	f(x)	$=\frac{1}{5}(x+-3)^{2}(x+1)(x+-5) \text{ for } \bullet^{3}.$		
Com	monly	Obse	erved Responses:		
Cand	lidate	A - ir	ncorrect signs	Candidate B - incorrect repeated root	
$f(\mathbf{x})$)=k(.	(x+3)	$(x-1)(x+5)$ $\bullet^1 \times \bullet^2 \checkmark_1$	$f(x) = k(x+1)^{2}(x-3)(x-5)$ • ¹ ×	² ✓ 1
f(x)	$=\frac{1}{5}($	(x+3)	$(x-1)(x+5)$ $\bullet^3 \checkmark_1$	$f(x) = -\frac{3}{5}(x+1)^{2}(x-3)(x-5)$	
Cand	lidate	C - ir	correct repeated root	Candidate D - incorrect signs and repea	ted root
f(x))=k(.	$(x-5)^{2}$	$(x+1)(x-3)$ $\bullet^1 \times \bullet^2 \checkmark_1$	$f(x) = k(x+5)^{2}(x-1)(x+3)$	² ×
f(x)	$)=\frac{3}{25}$	(x-5)	$\Big)^{2} (x+1)(x-3) $ $\bullet^{3} \checkmark_{1}$	$f(x) = \frac{3}{25}(x+5)^2(x-1)(x+3)$	
Candidate E - incorrect signs and repeated root			correct signs and repeated root	Candidate F - use of <i>a</i> , <i>b</i> and <i>c</i>	
f(x))=k(.	$(x-1)^2$	$(x+5)(x+3)$ $\bullet^1 \times \bullet^2 \times$	a = -3 b = 1, c = -5 (or $b = -5, c = 1$) • ² ✓	• ¹ ✓
f(x)	$) = -\frac{3}{5}$	(x-1)	$)^{2}(x+5)(x+3)$ \bullet^{3}	$k = \frac{1}{5}$ • ³	

[END OF MARKING INSTRUCTIONS]

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (CORs) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example $(x^3 + 2x^2 + 3x + 2)(2x + 1)$ written as

 $(x^3 + 2x^2 + 3x + 2) \times 2x + 1$

 $=2x^{4}+5x^{3}+8x^{2}+7x+2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.

- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.