ASQA

2007 Mathematics

Higher - Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2007
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.
1.01

qu	part mk	code	calc	source	ss	pd	ic	C	B	A	
1.01		3	G2, G3	CN	7063	1		2	3		

Find the equation of the line through the point $(-1,4)$ which
is parallel to the line with equation $3 x-y+2=0$.
The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- 1 | 1 | ss | express in standard form |
| :--- | :--- | :--- |
| 0^{2} | ic | interpret gradient |
| 0^{3} | ic | state equation of line |

Primary Method : Give 1 mark for each•
$y=3 x \ldots . \quad$ stated/implied by \bullet^{2}
gradient $=3$
stated/implied by \bullet
$y-4=3(x-(-1))$
form is $3 x-y+c=0$
$3 \times(-1)-4+c=0$
$c=7$

Notes

1 Accept any form of the answer (with or without working) for 3 marks
1.02

qu	part	mk	code	calc	source	ss	pd	ic	C	B	A
1.02		4	G17	CN	7001	1	1	2	4		

Relative to a suitable coordinate system A and B are the points $(-2,1,-1)$ and $(1,3,2)$ respectively.
A, B and C are collinear points and C is positioned such that $\mathrm{BC}=2 \mathrm{AB}$.
Find the coordinates of C.

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ${ }^{1}$ SS introduces vectors
$\bullet{ }^{2} \quad \mathrm{pd}$ completes
- ${ }^{3}$ ic interprets positions
ic finds C

Notes

$1 \quad$ Treat $\mathrm{C}=\left(\begin{array}{l}7 \\ 7 \\ 8\end{array}\right)$ as bad form

2 In Alt. method 2, without a diagram only \bullet^{2}, \bullet^{3} and $\bullet{ }^{4}$ are available.

Primary Method: Give 1 mark for each \cdot

Alt. method 1
${ }^{1} \quad c-b=2 b-2 a$

- ${ }^{2} \quad c=3 b-2 a$
$\bullet^{3} \boldsymbol{c}=3\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)-2\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)$
- ${ }^{4} \quad C=(7,7,8)$

Alt. method 2

${ }^{-1}$ ic \quad diagram \rightarrow

- ${ }^{2} \quad p d \quad x=7$
- \quad pd $\quad y=7$
- ${ }^{4} \quad p d \quad z=8$

1.03

qu	part	mk	code	calc	source	ss	pd	ic	C	B	A
1.03	a	2	A4	CN	7069	1		1	2		
	b	2	A4			1		1	2		

Functions f and g, defined on suitable domains, are given by

$$
f(x)=x^{2}+1 \text { and } g(x)=1-2 x .
$$

Find

(a)	$g(f(x))$	$\mathbf{2}$
(b)	$g(g(x))$	$\mathbf{2}$

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ${ }^{1}$ ss know to start from the "inside"
- ${ }^{2}$ ic interpret composite function
$\bullet{ }^{3}$ ss know to start from the "inside"
- ${ }^{4}$ ic interpret composite function

Primary Method : Give 1 mark for each \cdot

- ${ }^{1} g(f(x))=g\left(x^{2}+1\right) \quad$ s/i by \bullet^{2}
${ }^{2} \quad 1-2\left(x^{2}+1\right)$
$\bullet^{3} \quad g(g(x))=g(1-2 x) \quad$ s/i by \bullet^{4}
$1-2(1-2 x)$

Notes

1 in (a):
for finding $f(g(x))$:
$g(1-2 x) \quad$ no mark
$(1-2 x)^{2}+1 \quad$ award $\bullet{ }^{2}$
for finding $f(f(x))$: no marks

2 in (b):
for finding $f(g(x))$: no mark
for finding $f(f(x))$:
$f\left(x^{2}+1\right) \quad$ no mark
$\left(x^{2}+1\right)^{2}+1 \quad$ award $\bullet{ }^{4}$

3 There are no marks available for
either $g(x) \times f(x)$ or $g(x) \times g(x)$.
1.04

qu	part mk	code	calc	source	ss	pd	ic	C	B	A	
1.04		4	A18	CN	7099	1	1	2	4		

Find the range of values of k such that the equation
$k x^{2}-x-1=0$ has no real roots.

The primary method $\mathrm{m} . \mathrm{s}$ is based on the following generic $\mathrm{m} . \mathrm{s}$.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.
-• ss know to use discriminant <0 \bullet^{2} ic interpret the values of a, b and c \bullet^{3} ic substitute \bullet^{4} pd solve an inequation

Notes

1 The " <0 " has to appear at least once at the \bullet^{1} stage or the \bullet^{3} stage for \bullet^{1} to be awarded

2 If an x appears at \bullet^{2} stage, none of \bullet^{2}, \bullet^{3} or - ${ }^{4}$ are available

3 Some candidates may start with the quadratic formula. Apply the marking scheme to the part underneath the square root sign
4 The use of any expression masquerading as the discriminant can only gain \bullet^{2} at most

4

Primary Method : Give 1 mark for each \cdot

$$
\begin{aligned}
& b^{2}-4 a c<0 \\
& a=k, b=-1, c=-1 \quad \text { s/i by } \bullet^{3} \\
& 1+4 k \\
& k<-\frac{1}{4}
\end{aligned}
$$

Common Error 1

$\bullet^{1} \mathrm{X} \quad b^{2}-4 a c$
$\bullet \sqrt{ }, \bullet^{3} \sqrt{ } \quad 1+4 k$
$k=-\frac{1}{4}$
${ }^{4} X \quad k<-\frac{1}{4}$

qu	part mk	code	calc	source	ss	pd	ic	C	B	A	
1.05		5	G10	CN	7041	1	1	3	5		

The large circle has equation $x^{2}+y^{2}-14 x-16 y+77=0$. Three congruent circles with centres A, B and C are drawn inside the large circle with the centres lying on a line parallel to the x-axis.
This pattern is continued, as shown in the diagram.
Find the equation of the circle with centre D.
5

The primary method $\mathrm{m} . \mathrm{s}$ is based on the following generic $\mathrm{m} . \mathrm{s}$.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.
-
\bullet^{2}
ic
-
-

Primary Method : Give 1 mark for each \cdot

- ${ }^{1} \quad B=(7,8)$
- ${ }^{2} \quad r_{\text {large }}=\sqrt{7^{2}+8^{2}-77}=6$
$\begin{array}{ll}\bullet & r_{\text {small }}=\frac{6}{3} \\ \text { - } & D=(15,8) \\ \mathrm{s} / \mathrm{i} \text { by } \bullet{ }^{\bullet} \\ & \mathrm{s} / \mathrm{i} \text { by } \bullet\end{array}$
${ }^{5} \quad(x-15)^{2}+(y-8)^{2}=2^{2}$

Note

1 If $\mathrm{D}=(31,8)$ then \bullet^{4} is not available; however either of

$$
(x-31)^{2}+(y-8)^{2}=2^{2}
$$

or $\quad(x-31)^{2}+(y-8)^{2}=6^{2}$
may be awarded \bullet
$2 \cdot{ }^{5}$ is only awarded for substituting numerical values for the centre and the radius

qu	part mk	code	calc	source	ss	pd	ic	C	B	A
1.06		4	T7	NC	7100	1	2	1	4	

Solve the equation $\sin \left(2 x^{\circ}\right)=6 \cos \left(x^{\circ}\right)$ for $0 \leq x \leq 360$.

The primary method m.s is based on the following generic m.s.	
This generic marking scheme may be used as an equivalence guide	
but only where a candidate does not use the primary method or any	
alternative method shown in detail in the marking scheme.	
SS	know and use double angle formula
p	ite in st. form and factorise
- p	dor solve
i	now and use exact valu

Notes

$1 \quad \bullet^{1}$ is NOT available for $2 \sin A \cos A$ with no further working

2 The " $=0$ " has to appear at least once at the \bullet^{1} stage or the \bullet^{2} stage
3 The inclusion of extra answers which would have been correct but are outside the given interval should be treated as bad form (i.e. not penalised)

4 In following through from an error, \bullet^{4} is only available for solving an equation with no solution
5 The phrase "no solution" does not always appear after $\sin (x)=3$. The minimum indication that no solution exists might simply be a line drawn through or underneath the equation.

Primary Method: Give 1 mark for each \cdot

$2 \sin \left(x^{\circ}\right) \cos \left(x^{\circ}\right)$
$\cos \left(x^{\circ}\right)\left(2 \sin \left(x^{\circ}\right)-6\right)=0$
$\cos \left(x^{\circ}\right)=0$ and $x=90,270$

- ${ }^{4} \sin \left(x^{\circ}\right)=3$ and no solution
$\cos \left(x^{\circ}\right)=0$ and $\sin \left(x^{\circ}\right)=3$
$x=90,270$ and no solution
Alt. method: Division by $\cos \left(x^{\circ}\right)$
- ${ }^{1} 2 \sin \left(x^{\circ}\right) \cos \left(x^{\circ}\right)$
- ${ }^{2}$ either $\cos \left(x^{\circ}\right)=0$ or $\cos \left(x^{\circ}\right) \neq 0$ stated explicitly
$\bullet^{3} \quad \cos \left(x^{\circ}\right)=0 \Rightarrow x=90$ or 270
- $42 \sin \left(x^{\circ}\right)=6 \Rightarrow$ no solution
1.07

qu	part	mk	code	calc	source	ss	pd	ic	C	B	A
1.07	a	3	A14	CN	7080		2	1	3		
	b	3				1	1	1	3		

A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{1}{4} u_{n}+16, u_{0}=0 .
$$

(a) Calculate the values of u_{1}, u_{2} and u_{3}.

Four terms of this sequence, $u_{1}, u_{2}, \mathrm{u}_{3}$ and u_{4} are plotted as shown in the graph.
As $n \rightarrow \infty$, the points on the graph approach the line $u_{n}=k$, where k is the limit of this sequence.
(b) (i) Give a reason why this sequence has a limit.
(ii) Find the exact value of k.

The primary method m.s is based on the following generic m.s.	
This generic marking scheme may be used as an equivalence guide	
but only where a candidate does not use the primary method or any	
alternative method shown in detail in the marking scheme.	
- ${ }^{1}$ ic	interpret r.r.
$\bullet^{2} \quad \mathrm{pd}$	process
- ${ }^{\text {p }} \mathrm{pd}$	interpret and process
- ${ }^{4}$ ic	interpret " a "
- 5 SS	know how to find limit
- ${ }^{6} \mathrm{pd}$	complete

Notes 1

1 In (a) only numerical values for u_{1}, u_{2} and u_{3} are acceptable
2 For (b)(i) accept

$$
\left|\frac{1}{4}\right|<1
$$

$0<\frac{1}{4}<1$
$\frac{1}{4}$ lies between -1 and 1
$\frac{1}{4}$ is a proper fraction
3 For (b)(i) do NOT accept

$$
\begin{aligned}
& -1 \leq \frac{1}{4} \leq 1 \\
& \frac{1}{4}<1 \\
& -1<a<1 \text { unless } a \text { is clearly }
\end{aligned}
$$

identified/replaced by a $\frac{1}{4}$ anywhere in the answer

3

3

Primary Method : Give 1 mark for each \cdot

$u_{1}=\frac{1}{4} u_{0}+16 \quad \mathrm{~s} / \mathrm{i}$ by \bullet^{2}
16
20,21

- ${ }^{4} \quad-1<\frac{1}{4}<1$
- ${ }^{5} \quad k=\frac{1}{4} k+16$
$k=\frac{64}{3}$

Alternative for $\bullet{ }^{5}$ and $\bullet{ }^{6}$

$\begin{array}{rl}\bullet^{5} & k=\frac{16}{1-0.25} \\ \bullet^{6} & k=\frac{64}{3}\end{array}$

Notes 2

4 For (b)(ii)
$k=\frac{b}{1-a}$ and nothing else gains no marks
5 For (b)(ii)
$k=\frac{16}{\frac{3}{4}} \quad$ or $\quad k=\frac{16}{0.75}$ may be awarded $\bullet 5$
$k=\frac{16}{\frac{3}{4}}$ or $k=\frac{16}{0.75}$ or 21.3 does NOT gain $\bullet{ }^{6}$
6 Accept L in lieu of k
7 An answer of $\frac{64}{3}$ without any working cannot gain \bullet^{5} or \bullet^{6}
8 Any calculations based on formulae masquerading as a limit rule cannot gain \bullet^{5} or \bullet^{6}.

qu	part	mk	code	calc	source	ss	pd	ic	C	B	A
1.08	a	1	A21, C16	NC	7026	1			1		
	b	3				1	1	1	3		
	C	5				1	2	2	4	1	

The diagram shows a sketch of the graph of $y=x^{3}-4 x^{2}+x+6$.
(a) Show that the graph cuts the x-axis at $(3,0)$
(b) Hence or otherwise find the coordinates of A.
(c) Find the shaded area. 3 5

Primary Method : Give 1 mark for each•

$\cdot{ }^{1} \quad ' f(3)^{\prime}=27-36+3+6=0$

- ${ }^{2} \quad(x-3)\left(x^{2} \ldots\right)$
${ }^{3} \quad(x-3)\left(x^{2}-x-2\right)$
- ${ }^{4}(x-3)(x-2)(x+1)$ so $A=(2,0)$
- $\quad \int\left(x^{3}-4 x^{2}+x+6\right) d x$
- ${ }^{6} \quad \int_{0}^{2}$
- $\quad \frac{1}{4} x^{4}-\frac{4}{3} x^{3}+\frac{1}{2} x^{2}+6 x$
- $\quad \frac{1}{4} \times 2^{4}-\frac{4}{3} \times 2^{3}+\frac{1}{2} \times 2^{2}+6 \times 2$
- ${ }^{9} \frac{22}{3}$

Alt. Method 1 for \bullet^{1} to \bullet^{4}

\bullet^{2}| 3 | 1 | -4 | 1 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| | | 3 | -3 | -6 |
| | 1 | -1 | -2 | $\underline{\equiv}$ |
| | | | | |
| | | | | |

- ${ }^{3} \quad x^{2}-x-2$
- $4 x=2, x=-1 \boldsymbol{A} \boldsymbol{N D} x_{A}=2$

Alt. Method 2 for \bullet^{1} to \bullet^{4}

- ${ }^{1} \quad f(3)=\ldots . .=0$
- ${ }^{2} \quad \operatorname{try} f(n)=\ldots$. where $n>0$
- ${ }^{3} f(2)=\ldots . .=0$
-4 $x_{A}=2$ $\int_{0}^{3}=\frac{27}{4}, \int_{0}^{1}=\frac{65}{12}, \int_{0}^{4}=\frac{32}{3}, \int_{0}^{6}=90$

6 For candidates who differentiate, or fail to even try to integrate, $\bullet^{\mathbf{7}}, \bullet^{8}$ and \bullet^{9} are not available

qu	ans	mk	code	calc	source	ss	pd	ic	c	в	A	U1	U2	U3
1.09	a	2	A31	NC	7049	1	1		1	1		2		
	b	7				3	3	1	5	2		7		
	C	1						1		1		1		

A function f is defined by the formula $f(x)=3 x-x^{3}$.
(a) Find the exact values where the graph of $y=f(x)$ meets the x - and y-axes.
(b) Find the coordinates of the stationary points of the function and determine their nature.
(c) Sketch the graph of $y=f(x)$.

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.
${ }^{1}$ ss know to use, and use $x=0$ and $y=0$

- ${ }^{2}$ pd process
- ${ }^{3}$ ss know to differentiate
- ${ }^{4}$ pd differentiate
- ${ }^{5}$ ss know to set derivative to zero
- ${ }^{6}$ pd solve
-7 pd find corresponding $y^{\prime} \mathrm{s}$
$\bullet{ }^{8}$ ss know to justify, and justify stationary pts
- ${ }^{9}$ ic interpret (e.g. nature table)
\bullet^{10} ic sketch including relevant points

Notes 1

$1 \quad \bullet^{2}$ is only available if \bullet^{1} has been awarded
2 The " $=0$ " shown at $\bullet{ }^{5}$ must appear at least once somewhere in the working between $\bullet{ }^{3}$ and \bullet
$3 \bullet \bullet^{6}$ is only available as a consequence of solving $f^{\prime}(x)=0$
4 An unsimplified $\sqrt{1}$ should be penalised at the first occurence
5 The evidence for \bullet^{7} and $\bullet{ }^{9}$ may not appear until the sketch
6 The nature table must reflect previous working from $\bullet{ }^{4}$ and
7 The minimum requirement for the sketch is a cubic passing through the origin and with turning points annotated

2

7
1

Primary Method: Give 1 mark for each \cdot

any two of $x=0, x=\sqrt{3}$ and $x=-\sqrt{3}$
remaining one
$f^{\prime}(x)=$
$3-3 x^{2}$

- $f^{\prime}(x)=0$

		\bullet^{6}	\bullet^{7}	
\bullet	x	1	-1	
$\bullet \bullet^{7}$	y	2	-2	s/i by the sketch

sketch(see below)

Notes 2

8 The use of the 2nd derivative is an acceptable strategy for \bullet^{8}
9 As shown in the Primary Method, $\bullet^{6} \& \bullet^{7}$, and $\bullet{ }^{8} \& \bullet{ }^{9}$ may be marked in series or in parallel [see foot of next page]
$10 \mathrm{~A} "-\sqrt{3}$ " appearing for the first time on the sketch may not be awarded $\bullet^{1} / \bullet^{2}$ retrospectively
11 See foot of next page for examples of a nature table.

1.10

qu	part mk	code	calc	source	ss	pd	ic	C	B	A
1.10		3	C21	CN	7004	2	1			3

Given that $y=\sqrt{3 x^{2}+2}$, find $\frac{d y}{d x}$.

The primary method m.s is based on the following generic m.s.	
This generic marking scheme may be used as an equivalence guide	
but only where a candidate does not use the primary method or any	
alternative method shown in detail in the marking scheme.	
- ${ }^{1}$ SS	expresses in standard form
${ }^{2} \mathrm{p}$	differentiate a binomial to fractional power
$\bullet^{3} \mathrm{SS}$	know and use chain rule

see previous page

Marking in series

- ${ }^{6} \quad x=1, x=-1$

Marking in parallel

- $7 \quad y=2, y=-2$
- $\quad x=1, y=2$

Marking in series or parallel

$$
\begin{array}{ll|l|l}
& & \bullet^{6} & \bullet{ }^{7} \\
\bullet^{6} & x & 1 & -1 \\
\bullet^{7} & y & 2 & -2
\end{array}
$$

Example of a minimum requirement nature table

		\bullet^{8}			\bullet^{9}		
	\bullet	\ldots	-1	\ldots	\ldots	1	\ldots
$\bullet^{8} 9$	f^{\prime}	-	0	+	+	0	-

Example of a preferred nature table

	$\bullet 8$			- ${ }^{\text {a }}$		
\boldsymbol{x}	\rightarrow	-1	\rightarrow	\rightarrow	1	\rightarrow
f^{\prime}	-	0	$+$	$+$	0	-
		min at $x=-1$			max at $x=1$	\ddots

Common Errors

$$
\begin{aligned}
& 1 \cdot{ }^{1} X \\
& y=\left(3 x^{2}+2\right)^{-1} \\
& \text { - } X \quad \frac{d y}{d x}=-\left(3 x^{2}+2\right)^{-2} \\
& \bullet^{3} X \sqrt{ } \\
& \text {... } \times 6 x \\
& \begin{array}{cc}
2 \quad & \bullet \sqrt{ } \\
& \bullet^{2} X \\
& \bullet \\
& \bullet^{3} X \sqrt{ }
\end{array} \\
& y=\left(3 x^{2}+2\right)^{\frac{1}{2}} \\
& \text { - } 2 \quad \frac{d y}{d x}=-\frac{1}{2}\left(3 x^{2}+2\right)^{\frac{3}{2}} \\
& \begin{array}{ll}
2 & \bullet \\
& \bullet^{1} \sqrt{ } 1 \\
& \bullet^{3} X \sqrt{ }
\end{array} \\
& \text {... } \times 6 x \\
& { }^{1}{ }^{1} X \\
& \frac{d y}{d x}=-\left(3 x^{2}+2\right)^{-2} \\
& \text { - } X \\
& \text {... } \times 6 x
\end{aligned}
$$

1.11

qu	part	mk	code	calc	source	ss	pd	ic	C	B	A
1.11	a	4	T13, T15	NC	7006	1	2	1	4		
	b	4						4		2	2

(a) Express $f(x)=\sqrt{3} \cos (x)+\sin (x)$ in the form $k \cos (x-a)$, where $k>0$ and $0<a<\frac{\pi}{2}$.
(b) Hence or otherwise sketch the graph of $y=f(x)$ in the interval $0 \leq x \leq 2 \pi$.

Notes 1

1 In the whole question, do not penalise more than once for not using radians
Table showing marks lost for using degrees:

$$
\begin{array}{c|cccc}
a & 30^{\circ} & \frac{\pi}{6} & 60^{\circ} & \frac{\pi}{3} \\
\hline \text { graph in degrees } & \mathbf{- 1} & \mathbf{- 1} & \mathbf{- 2} & \mathbf{- 2} \\
\hline \text { graph in radians } & \mathbf{- 1} & \mathbf{O K} & \mathbf{- 1} & \mathbf{- 1}
\end{array}
$$

In (a)
$2 k(\cos x \cos a+\sin x \sin a)$ is acceptable for \bullet^{1}
$3 \quad k=\sqrt{4}$ does NOT earn \bullet^{3}
$42(\cos x \cos a+\sin x \sin a)$ etc is acceptable for $\bullet^{1} \& \bullet^{3}$
5 Candidates may use any form of the wave equation as long as their final answer is in the form $k \cos (x-a)$. If not then \bullet^{4} is not available
6 Treat $k \cos x \cos a+\sin x \sin a$ as bad form ONLY if \bullet^{2} is gained.

4

4

Primary Method : Give 1 mark for each•

- ${ }^{1} \quad k \cos (x) \cos (a)+k \sin (x) \sin (a) \quad$ stated explicitly
- $\quad k \cos (a)=\sqrt{3}, k \sin (a)=1 \quad$ stated explicitly
- ${ }^{3} \quad k=2$
- $\quad a=\frac{\pi}{6}$
a sketch showing
$\cdot{ }^{5} \max \left(\frac{\pi}{6}, \ldots\right)$ and $\min \left(\frac{7 \pi}{6}, \ldots\right)$
${ }^{6} \quad \max (\ldots, 2)$ and $\min (\ldots,-2)$
- $7\left(\frac{2 \pi}{3}, 0\right)$ and $\left(\frac{5 \pi}{3}, 0\right)$
$\bullet \quad(0, \sqrt{3})$

Notes 2

In (b)
7 Do not penalise graphs which go beyond $0 \leq x \leq 2 \pi$
8 A maximum of 3 marks are available for candidates who attempt to sketch graphs of $k \cos (x+a)$, $k \sin (x+a)$ or $k \sin (x-a)$. No other graphs can earn any credit

9 Alternative marking for 2 marks for candidates who do not make a sketch
$\max \left(\frac{\pi}{6}, \ldots\right), \min \left(\frac{7 \pi}{6}, \ldots\right),(\ldots, 2),(\ldots,-2)$,
$\left(\frac{2 \pi}{3}, 0\right),\left(\frac{5 \pi}{3}, 0\right)$ and $(0, \sqrt{3})$

- 5 any two from the above list
- ${ }^{6} \quad$ another two from the above list

入SQA

2007 Mathematics

Higher - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2007
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.
2.01

qu	part	mk	code	calc	source	ss	pd	ic	C	B	A	
2.01	a	1	G21, G28	CN	7044			1	1			
	b	2			CN				2	2		
	C	5			CN		1	4		5		

OABCDEFG is a cube with side 2 units, as shown in the diagram. B has coordinates ($2,2,0$).
P is the centre of face OCGD and Q is the centre of face CBFG.
(a) Write down the coordinates of G .
(b) Find \boldsymbol{p} and \boldsymbol{q}, the position vectors of points P and Q. $\mathbf{2}$
(c) Find the size of angle POQ.

Primary Method : Give 1 mark for each•
$\bullet{ }^{1} \quad G=(0,2,2)$
$\begin{array}{lll}\bullet^{2} & \boldsymbol{p} & =\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \\ \bullet^{3} & \boldsymbol{q}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\end{array}$
\boldsymbol{p} and \boldsymbol{q} must be stated explicitly as a column (or row) vector

- $\quad \cos \mathrm{PO} \mathrm{Q}=\frac{\boldsymbol{p} \cdot \boldsymbol{q}}{|\boldsymbol{p} \| \boldsymbol{q}|} \quad$ stated or implied (s / i) by
${ }^{5} \quad|p|=\sqrt{2}$
$|\boldsymbol{q}|=\sqrt{6}$
$\boldsymbol{p} . \boldsymbol{q}=3$
- $8 \quad \mathrm{POQ}=30^{\circ}$
[radians : $\frac{\pi}{6}$ (0.524); gradians : 33.3]

Notes 1

1 Treat coordinates written as column vectors as bad form 2 In (b), if \boldsymbol{p} is wrong, this may be a follow through from (a) which has wrong coordinates for G.

3 For candidates who do not attempt \bullet^{8}, the formula quoted at $\bullet{ }^{4}$ must relate to the labelling in the question for \bullet^{4} to be awarded.
4 In (c) for \bullet^{8} accept answers which round to 30° (2 s.f.)
5 In (c) \bullet^{4} is not available for candidates who choose to calculate an incorrect angle (e.g. angle OPQ).

Alternative Method for \bullet^{4} to \bullet^{8}

- $\quad \cos \mathrm{POQ}=\frac{\mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2}}{2 \times \mathrm{OP} \times \mathrm{OQ}} \quad$ stated or implied (s / i) by
- $5 \quad \mathrm{OP}=\sqrt{2}$
- $6 \quad \mathrm{OQ}=\sqrt{6}$
- $7 \quad \mathrm{PQ}=\sqrt{2}$
- $8 \quad \mathrm{POQ}=30^{\circ}$
[radians : $\frac{\pi}{6}$ (0.524); gradians : 33.3]

qu	part	mk	code	source	ss	pd	ic	C	B	A		
2.02	a	4	T9		CN	7098	1	1	2	4		
	b	4				2	1	1	4			

The diagram shows two right-angled triangles with angles c and d marked as shown.
(a) Find the exact value of $\sin (c+d)$.
(b) (i) Find the exact value of $\sin 2 c$
(ii) Show that $\cos 2 d$ has the same exact value.

Notes 1

1 Any attempt to use $\sin (c+d)=\sin c+\sin d$ loses \bullet^{2}, \bullet^{3} and \bullet^{4}
2 At \bullet^{3} treat $\sin \left(\frac{1}{\sqrt{5}}\right) \cos \left(\frac{3}{\sqrt{10}}\right)+\cos \left(\frac{2}{\sqrt{5}}\right) \sin \left(\frac{1}{\sqrt{10}}\right)$ as bad form if the trig functions disappear to give the answer
3 At the \bullet^{3} stage do not penalise the use of fractions which are greater than 1
4 Neither \bullet^{4} nor \bullet^{6} are available for answers >1
5 Any work based on $\sin 2 c=2 \sin c \operatorname{loses} \bullet{ }^{5}$ and \bullet^{6}
6 Any work based on $\cos 2 d=2 \cos d$ loses \bullet^{7} and \bullet^{8}
7 In (b) candidates may calculate $\sin 2 c$ and $\cos 2 d$ in any order. If either $\sin 2 c$ or $\cos 2 d$ is correct that may be awarded 2 of the 4 marks available
8 Any working based on numerical values for c and d (eg 27° and 18°) earns no credit but $\bullet^{1}, \bullet^{2}, \bullet^{5}$ and \bullet^{7} are still available.
$9 \quad \bullet^{8}$ is only available if the answer to (b)(ii) is shown to be equivalent to the answer to (b)(i)
10 If $\sqrt{5}$ and $\sqrt{10}$ are approximated to decimal values then \bullet^{4}, \bullet^{6} and \bullet^{8} are not available.

4

4

Primary Method: Give 1 mark for each \cdot

$\begin{array}{lll}\bullet & \sqrt{5} \text { and } \sqrt{10} & \mathrm{~s} / \mathrm{i} \text { by } \bullet^{3} \\ \bullet^{2} & \sin (c) \cos (d)+\cos (c) \sin (d) & \mathrm{s} / \mathrm{i} \text { by } \bullet^{3}\end{array}$

- $\frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}}+\frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{10}}$
- $\frac{1}{\sqrt{2}}$ (accept any equivalent single fraction)
- $5 \quad 2 \sin (c) \cos (c)$
- ${ }^{6} \quad 2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}}=\frac{4}{5} \quad$ or equivalent
- ${ }^{7} \quad$ e.g. $\cos ^{2}(d)-\sin ^{2}(d)$
$\bullet^{8} \quad \frac{9}{10}-\frac{1}{10}=\frac{8}{10}=\frac{4}{5}$

Common Errors

$1 \quad \sin 2 c=2 \sin d \cos d$ $\sin 2 c=2 \frac{1}{\sqrt{10}} \frac{3}{\sqrt{10}} \quad$ award 1 mark from \bullet^{5} and \bullet^{6}
$2 \quad \cos 2 d=\cos ^{2} c-\sin ^{2} c$
$\cos 2 d=\frac{2}{\sqrt{5}} \frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}}$ award 1 mark from \bullet^{7} and \bullet^{8}
2.03

qu	part	mk	code	calc	source	s	pd	c	c	B	A
2.03		6	G13	CN		1	1	4	6		

Show that the line with equation $y=6-2 x$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x-4 y-7=0$ and find the coordinates of the point of contact of the tangent and the circle.

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ${ }^{1}$ ss substitute
- ${ }^{2}$ pd expand brackets
${ }^{3}$ ic express in standard form
- ic factorise
\bullet ic complete proof
$\bullet{ }^{6}$ ic state coordinates

Notes 1

1 An " $=0$ " must appear somewhere in the working between \bullet^{1} and \bullet^{4} stage. Failure to appear will lose one of these marks
2 For candidates who obtain 2 roots:
${ }^{5}$ is still available for "not equal roots so NO tangent" but \bullet^{6} is not available

Primary Method : Give 1 mark for each \cdot

- ${ }^{1} \quad x^{2}+(6-2 x)^{2}+6 x-4(6-2 x)-7=0$
. $\quad . . .36-24 x+4 x^{2} \ldots .-24+8 x \ldots$
-3 $\quad 5 x^{2}-10 x+5=0$
- $\quad(x-1)^{2}=0$
- ${ }^{5}$ equal roots \Rightarrow line is tangent
$x=1, y=4$
alternatives for \bullet^{4} and $\bullet{ }^{\mathbf{5}}$
- $b^{2}-4 a c=0 \Rightarrow$ tangent
- ${ }^{5} \quad(-10)^{2}-4 \times 5 \times 5=0$
- use quad. formula to get roots
${ }^{5} \quad$ equal roots \Rightarrow line is tangent

Alternative Method : Give 1 mark for each -

- $m_{\text {line }}=-2$
- $2(-3,2)$ and $\frac{1}{2}$
- ${ }^{3}$ equ. of radius : $y-2=\frac{1}{2}(x+3)$
- $x^{4} \quad x=1$
- $\quad y=4$
- ${ }^{6}$ check that $(1,4)$ lies on the circle
2.04

qu	part	mk	code	calc	source	ss		ic	c	B	A
2.04	a	3	T4, T7	CN	7102			3	3		
	b	3		CN		1	2		3		

The diagram shows part of the graph of a function whose equation is of the form $y=a \sin \left(b x^{\circ}\right)+c$.
(a) Write down the values of a, b and c.

3
(b) Determine the exact value of the x-coordinate of P , the point where the graph intersects the x-axis as shown in the diagram.

solution via a graphics calculator

- ${ }^{4}$ ss sketch and annotate

Primary Method : Give 1 mark for each \cdot

- $\quad a=2$
- ${ }^{2} \quad b=3$
-3 $\quad c=-1$
- ${ }^{4} \quad 2 \sin \left(3 x^{\circ}\right)-1=0$
- one answer from 10° or 50°
- $x_{P}=50^{\circ}$

alternative for $\bullet{ }^{4}, \bullet^{5}$ and $\bullet{ }^{6}$

- ${ }^{4}$ sketch of graph with pointer to sol.point
-5 extraction of 50°
$\cdot{ }^{5}$ ic interpret scale
\bullet ic check exact value

Notes 1

$1 \quad \bullet^{4}$ may be awarded for $a \sin (b x)+c=0$
2 For \bullet^{2} accept " $b=3 x$ " as bad form
$3 \quad \bullet^{6}$ may only be awarded for a value of x such that $30<x<60$
$4 \bullet{ }^{6}$ may be awarded for $\left(50^{\circ}, 0\right)$ but NOT for $\left(0,50^{\circ}\right)$
2.05

| qu | part | mk | code | calc | source | ss | pd | ic | C | B | A |
| :--- | :---: | :---: | :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.05 | a | 5 | C5, G10,G11 | CN | 7017 | 2 | 2 | 1 | 5 | | |
| | b | 2 | | | | 1 | | 1 | | 2 | |
| | C | 2 | | | | | | 2 | | 2 | |

A circle centre C is situated so that it touches the parabola with equation $y=\frac{1}{2} x^{2}-8 x+34$ at P and Q .
(a) The gradient of the tangent to the parabola
at Q is 4 . Find the coordinates of Q .
(b) Find the coordinates of P. $\mathbf{2}$
(c) Find the coordinates of C, the centre of the circle.

The primary method m.s is based on the following generic m.s.	
This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any	
alternative method shown in detail in the marking scheme.	
$\cdot^{1} \quad$ SS	know to differentiate
- ${ }^{2} \mathrm{pd}$	process
0^{3} SS	equate gradients
- ${ }^{4} \mathrm{pd}$	process
$\cdot{ }^{5} \quad$ ic	interpret y-coordinate
${ }^{6}$ SS	use symmetry of diagram
- ${ }^{7}$ ic	interpret coordinates
\bullet^{8} ic	interpret centre
$\bullet^{9} \quad$ ic	interpret centre

Notes 1

1 Treat $y=x-8$ as bad form provided y is replaced by 4 at \bullet^{3}
2 Cave
Look out for the following:
$\cdot{ }^{5}$ is not available to candidates who substitute the gradient of 4 into the equation in order to find the value of y_{Q}
3 Alt. strategies for \bullet^{6}
(a) substitute $y=10$ into the parabola
(b) use the t.p. as a step to P

4 Cave
There are other legitimate methods for
finding the coordinates of Q
5 Candidates who solve the tangents at P and Q AND then state that $x_{C}=8$ may be awarded \bullet^{8}.

Primary Method : Give 1 mark for each -

$\frac{d y}{d x}=\ldots(1$ term correct $)$

- ${ }^{2} \quad x-8$
- ${ }^{3} \quad x-8=4$
- ${ }^{4} \quad x=12$
-. $\quad y=10$
$\bullet^{6} \quad m_{P}=-4$
$\mathrm{P}=(4,10)$
$8 x_{C}=8$
$y_{C}=11$

Alternative Method for (c)

Solving the normals

$$
\text { i.e. } \begin{aligned}
y-10 & =-\frac{1}{4}(x-12) \\
y-10 & =\frac{1}{4}(x-4)
\end{aligned}
$$

may be used. Marks are awarded as normal:

$$
x=8\left(\bullet^{8}\right) \text { and } y=11\left(\bullet^{9}\right)
$$

Common Errors

$1 \quad \frac{d y}{d x}=x-8 \quad \quad \sqrt{ } \bullet^{1}, \sqrt{ } \bullet^{2}$ $x-8=0 \Rightarrow x=8, y=2 \quad \sqrt{ } \bullet^{5}$

2 For the occasional candidate who starts
with $x-8=4$
award \bullet^{1}, \bullet^{2} and \bullet^{3}
2.06

qu	part	mk	code	1 c	source	ss		ic	c	B	A
2.06	a	3	C11	CN	7062		1	2			3
	b	5		CN		1	3	1	1	4	

A householder has a garden in the shape of a right-angled isosceles triangle.
It is intended to put down a section of rectangular wooden decking at the side of the house, as shown in the diagram.

(a) (i) Find the exact value of ST.
(ii) Given that the breadth of the decking is x metres, show that the area of the decking, A square metres, is given by

$$
\begin{equation*}
A=(10 \sqrt{2})_{x-2 x^{2}} \tag{3}
\end{equation*}
$$

(b) Find the dimensions of the decking which maximises its area. 5

Notes 1

In (b)
$1 \quad$ An " $=0$ " must appear somewhere in the working between \bullet^{4} and \bullet^{6}
2 For \bullet^{7} accept $\frac{d^{2} A}{d x^{2}}=-4<0$ at $x=\frac{10 \sqrt{2}}{4} \Rightarrow$ maximum

Primary Method : Give 1 mark for each \cdot

- $\quad S T=\sqrt{200}$
- ${ }^{2}$ length $=\sqrt{200}-2 x \quad \mathrm{~s} / \mathrm{i}$ by their method
-3 $(\sqrt{200}-2 x) \times x$
and complete proof
- $\frac{d A}{d x}=0$
- $\frac{d A}{d x}=10 \sqrt{2}-4 x$
- $\quad x=\frac{10 \sqrt{2}}{4}$ or equivalent
- ${ }^{7} \quad$ justification : e.g. nature table
${ }^{8} \quad$ length $=5 \sqrt{2}(7.1)$
Minimum requirement of a nature table

	\ldots	3.5	\ldots
$f^{\prime}(x)$	+	0	-

hence maximum
better would be

x	\rightarrow	$\frac{5 \sqrt{2}}{2}$	\rightarrow
$f^{\prime}(x)$	+	0	-
$f(x)$	\therefore	\ldots	\ddots

hence maximum
at $x=\frac{5 \sqrt{2}}{2}$
2.07

| qu | part | mk | code | calc | source | ss | pd | ic | C | B | A |
| :--- | :---: | :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.07 | | 4 | C23, T3 | CR | 7046 | | 3 | 1 | | 3 | 1 |

Find the value of $\int_{0}^{2} \sin (4 x+1) d x$.
4

Notes 1

$1 \cdot \bullet^{2}$ is only available if it follows on from

$$
\pm \sin (4 x+1) \text { or } \pm \cos (4 x+1)
$$

$2 \quad \bullet^{3}$ is available for substituting the limits correctly into any trig. function except the original one
$3 \quad \bullet{ }^{4}$ is available for using any trig. function except the original one

4 If candidates leave the calculator in degree mode obtaining 0.000304 then $\bullet{ }^{4}$ is NOT awarded

Primary Method : Give 1 mark for each \cdot

- ${ }^{1} \quad-\cos (4 x+1)$
- ${ }^{2} \times \frac{1}{4}$
$\bullet^{3} \quad-\frac{1}{4} \cos (4 \times 2+1)-\left(-\frac{1}{4} \cos (4 \times 0+1)\right)$
${ }^{4} \quad 0.36$

Alternative Method

$\sin 4 x \cos 1+\cos 4 x \sin 1$

- ${ }^{1} \quad-\frac{1}{4} \cos 4 x \cos 1$
- $\frac{1}{4} \sin 4 x \sin 1$
- ${ }^{3}\left(-\frac{1}{4} \cos 8 \cos 1+\frac{1}{4} \sin 8 \sin 1\right)-\left(-\frac{1}{4} \cos 0 \cos 1+\frac{1}{4} \sin 0 \sin 1\right)$
- 0.36
2.08

qu	part	mk	code		calc	source	ss	pd	ic	C	B	A
2.08		4	A31	CR	7049	2	1	1		4		

The curve with equation $y=\log _{3}(x-1)-2.2$, where $x>1$, cuts the x-axis at the point $(a, 0)$.

Find the value of a.

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme

- ${ }^{1}$ ic substitute
\bullet^{2} Ss isolate the log term
\bullet^{3} ss convert to exponential form
- ${ }^{4}$ pd process

Notes 1

1 Solutions given in terms of x rather than a should be treated as bad form.

4

Primary Method: Give 1 mark for each \cdot

- $\log _{3}(a-1)-2.2=0 \quad \mathrm{~s} / \mathrm{i}$ by \bullet
${ }^{2} \quad \log _{3}(a-1)=2.2$
- $\quad a-1=3^{2.2}$
- ${ }^{4} \quad a=12.2$

Alt.method 1

- $\log _{3}(a-1)-2.2=0 \quad \mathrm{~s} / \mathrm{i}$ by \bullet
- ${ }^{2} \quad \log _{3}(a-1)=2.2$
- $\log _{3}(a-1)=\log _{3}(11.21)$
- ${ }^{4} \quad a=12.2$

Alt.method 2

$\bullet \log _{3}(a-1)-2.2=0 \quad \mathrm{~s} / \mathrm{i}$ by \bullet^{2}
$\log _{3}(a-1)-2.2 \log _{3} 3=0$
-2 $\quad \log _{3}(a-1)-\log _{3}(11.21)=0$

- ${ }^{3} \quad \log _{3} \frac{(a-1)}{11.21}=0$
$a=12.2$

Common Error 1

- ${ }^{1} \sqrt{ } \quad \log _{3}(a-1)-2.2=0$
- $2 \sqrt{ } \quad \log _{3}(a-1)=2.2$
- ${ }^{3} X \quad \log _{3}(a-1)=\log _{3} 2.2$
${ }^{4} X \quad a-1=2.2 \Rightarrow a=3.2 \quad[$ eased $]$

Common Error 2

- ${ }^{1} \sqrt{ } \quad \log _{3}(a-1)-2.2=0$
$\bullet \sqrt{ }{ }^{2} \quad \log _{3}(a-1)=2.2$
$\bullet^{3} X \quad \log _{3} a-\log _{3} 1=2.2$

$$
\log _{3} a=2.2
$$

- ${ }^{4} X \sqrt{ }$

$$
a=3^{2.2}=11.2
$$

2.09

qu	part	mk	code	calc	source	ss	ic	C	B	A	U1	U2	U3
2.09	a	2	A3	CN	7071		2		2		2		
	b	2		CN			2			2	2		

The diagram shows the graph of $y=a^{x}, a>1$.
On separate diagrams sketch the graphs of:
(a) $y=a^{-x}$
(b) $y=a^{1-x}$

2

Primary Method : Give 1 mark for each \cdot

This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ${ }^{1}$ ic determine the requ. transformation
- ic state coordinates of pt. on graph
\bullet^{3} ic determine the requ. transformation
- ${ }^{4}$ ic state coordinates of pt. on graph
- ${ }^{1} \quad$ reflecting in y-axis and passing thr' e.g. $(0,1)$
-2 passing thr' 1 more point e.g. $(-1, a)$ or $\left(1, \frac{1}{a}\right)$
- ${ }^{3}$ vertical scaling of " a " and passing thr' e.g. $(0, a)$
- passing thr' 1 more point e.g. $\left(-1, a^{2}\right)$ or $(1,1)$

Notes 1

1 For \bullet^{1} and \bullet^{3} the shape must be an exponential decay graph lying above the x-axis
2 There are no follow-through marks available to candidates who use an incorrect graph from (a) as a basis for their answer to (b).
2.10

qu	part	mk	code	calc	source	ss	ic			C	B
2.10	a	3	C18, C19	CN	7028	1	1	1	1	2	
	b	4		CN		1	1	2			4

The diagram shows the graphs of a cubic function $y=f(x)$ and its derived function $y=f^{\prime}(x)$.
Both graphs pass through the point $(0,6)$.
The graph of $y=f^{\prime}(x)$ also passes through the points $(2,0)$ and $(4,0)$.
(a) Given that $f^{\prime}(x)$ is of the form $k(x-a)(x-b)$
(i) Write down the values of a and b.

(ii) Find the value of k.
(b) Find the equation of the graph of the cubic function $y=f(x)$.

Primary Method : Give 1 mark for each•

$a=2$ and $b=4 \quad$ or $\quad k(x-2)(x-4)$
$6=k(0-2)(0-4)$

- ${ }^{3} \quad k=\frac{3}{4}$
- ${ }^{4} \int\left(\frac{3}{4}(x-2)(x-4)\right) d x \quad$ s/i by \bullet^{5}
- 5 any two terms integrated correctly ($\frac{3}{12} x^{3}$ etc)
$y=\frac{1}{4} x^{3}-\frac{9}{4} x^{2}+6 x+c$
$c=6$
2.11

qu	part	mk	code	calc	source	ss	pd	ic	c	B	A	U1	U2	U3
2.11	a	1	A33	CR	7014			1		1				1
	b	1						1	1					1
	C	4				1		3			4			4

Two variables x and y satisfy the equation $y=3 \times 4^{x}$.
(a) Find the value of a if $(a, 6)$ lies on the graph with equation $y=3 \times 4^{x}$.
(b) If $\left(-\frac{1}{2}, b\right)$ also lies on the graph, find b.
(c) A graph is drawn of $\log _{10} y$ against x. Show that its equation will be of the form $\log _{10} y=P x+Q$ and state the gradient of this line.

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ${ }^{1}$ ic interprets equation
- ${ }^{2}$ ic interprets equation
- ${ }^{3}$ ss introduces logs
- ${ }^{4}$ ic uses log law
$\cdot{ }^{5}$ ic uses log law and completes
$\bullet^{6} \quad$ ic
interprets equation

Notes

1 Do not penalise $x=\frac{1}{2}, y=\frac{3}{2}$

2 Candidates who start their "proof" with the wrong form (e.g. $y=P x^{Q}$) earn no credit in part (c).

Primary Method: Give 1 mark for each \cdot

$a=\frac{1}{2}$

- $\quad b=\frac{3}{2}$
$\bullet^{3} \quad \log _{10}(y)=\log _{10}\left(3 \times 4^{x}\right)$
- $\quad \log _{10}(y)=\log _{10}(3)+\log _{10}\left(4^{x}\right)$
- ${ }^{5} \quad \log _{10}(y)=x \log _{10}(4)+\log _{10}(3)$
- ${ }^{6}$ gradient $=\log _{10}(4)$ or equivalent

Alternative Method

- $1 \quad y=10^{P x+Q}$
- $\quad y=10^{Q} \times\left(10^{P}\right)^{x}$
- $\quad 10^{Q}=3$ and $10^{P}=4$
- $\quad P=\log _{10} 4$

Cave

In (a) look out for the following:

$$
\begin{aligned}
6 & =3 \times 4^{a} \\
2 & =4^{a} \\
\frac{2}{4} & =a \\
a & =\frac{1}{2}
\end{aligned}
$$

This is not awarded

1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made.
This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
4. Correct working should be ticked $(\sqrt{ })$. This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (\mathbf{X} or $\mathbf{X} \sqrt{ }$). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line.

Work which is correct but inadequate to score any marks should be corrected with a double cross tick (\mathbb{X}).
5. - The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked. Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.
7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will normally be indicated in the marking instructions.
8. Do not penalise:

- working subsequent to a correct answer
- legitimate variations in numerical answers
- correct working in the "wrong" part of a question
- omission of units
- bad form

9. No piece of work should be scored through without careful checking - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme - answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

13 Transcription errors: In general, as a consequence of a transcription error, candidates lose the opportunity of gaining either the first ic mark or the first pd mark.

14 Casual errors: In general, as a consequence of a casual error, candidates lose the opportunity of gaining the appropriate ic mark or pd mark.

15 Do not write any comments on the scripts. A revised summary of acceptable notation is given on page 4.

16 Working that has been crossed out by the candidate cannot receive any credit. If you feel that a candidate has been disadvantaged by this action, make a P.A. Referral.

17 Throughout this paper, unless specifically mentioned, a correct answer with no working receives no credit.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

1 Tick correct working.
2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations
Remember - No comments on the scripts. Please use the following and nothing else.

Signs

\checkmark The tick. You are not expected to tick every line but of course you must check through the whole of a response.

X The cross and underline. Underline an error and place a cross at the end of the line.

X The tick-cross. Use this to show correct work where you are following through subsequent to an error.

The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).

The double cross-tick. Use this to show correct work but which is inadequate to score any marks. This may happen when working has been eased.

Remember - No comments on the scripts. No abreviations. No new signs. Please use the above and nothing else.

All of these are to help us be more consistent and accurate.

Note: There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error. These are all mistakes and as a consequence a mark is lost.

Page 5 lists the syllabus coding for each topic. This information is given in the legend underneath the question. The calculator classification is CN(calculator neutral), CR(calculator required) and NC (non-calculator).

1	2		UNIT 1	1	2		UNIT 2	1	2		UNIT 3 Year	
		A1	determine range/domain			A15	use the general equation of a parabola			A28	use the laws of logs to simplify/find equiv. expression	
		A2	recognise general features of graphs:poly, exp,log			A16	solve a quadratic inequality			A29	sketch associated graphs	
		Аз	sketch and annotate related functions			A17	find nature of roots of a quadratic			A30	solve equs of the form $A=B e^{k t}$ for A, B, k or t	\%
		A4	obtain a formula for composite function			A18	given nature of roots, find a condition on coeffs			A31	solve equs of the form $\log _{b}(a)=c$ for a, b or c	
		A5	complete the square			A19	form an equation with given roots			A32	solve equations involving logarithms	
		A6	interpret equations and expressions			A20	apply A15-A19 to solve problems			АЗ3	use relationships of the form $y=a x^{n}$ or $y=a b^{x}$	
		A7	determine function(poly, exp,log) from graph \mathcal{B} vv							A34	apply A28-A33 to problems	
		A8	sketch/annotate graph given critical features									
		A9	interpret loci such as st.lines, para,poly, circle									
		A10	use the notation u_{n} for the nth term			A21	use Rem Th. For values, factors, roots			G16	calculate the length of a vector	
		A11	evaluate successive terms of a $R R$			A22	solve cubic and quartic equations			G17	calculate the 3rd given two from A, B and vector $A B$	
		A12	decide when $R R$ has limit/interpret limit			A23	find intersection of line and polynomial			G18	use unit vectors	
		A13	evaluate limit			A24	find if line is tangent to polynomial			G19	use: if $\boldsymbol{u}, \boldsymbol{v}$ are parallel then $\boldsymbol{v}=k \boldsymbol{u}$	
		A14	apply A10-A14 to problems			A25	find intersection of two polynomials			G20	add, subtract, find scalar mult. of vectors	
						A26	confiirm and improve on approx roots			G21	simplify vector pathways	
						A27	apply A21-A26 to problems			G22	interpret 2D sketches of 3D situations	
										G23	find if 3 points in space are collinear	
										G24	find ratio which one point divides two others	
		G1	use the distance formula			G9	find C / R of a circle from its equation/other data			G25	given a ratio, find/interpret 3rd point/vector	
		G2	find gradient from 2 pts,/angle/equ. of line			G10	find the equation of a circle			G26	calculate the scalar product	
		G3	find equation of a line			G11	find equation of a tangent to a circle			G27	use: if $\boldsymbol{u}, \boldsymbol{v}$ are perpendicular then $\boldsymbol{v} \cdot \boldsymbol{u}=\mathbf{0}$	
		G4	interpret all equations of a line			G12	find intersection of line \mathcal{E}^{3} circle			G28	calculate the angle between two vectors	
		G5	use property of perpendicular lines			G13	find if/when line is tangent to circle			G29	use the distributive law	
		G6	calculate mid-point			G14	find if two circles touch			G30	apply G16-G29 to problems eg geometry probs.	
		G7	find equation of median, altitude,perp. bisector			G15	apply G9-G14 to problems					
		G8	apply G1-G7 to problems eg intersect., concur.,collin.									
		C1	differentiate sums, differences			C12	find integrals of $p x^{n}$ and sums/diffs			C20	differentiate psin $(a x+b), p \cos (a x+b)$	
		C2	differentiate negative \mathcal{E}° fractional powers			C13	integrate with negative \mathcal{E}^{8} fractional powers			C21	differentiate using the chain rule	
		C3	express in differentiable form and differentiate			C14	express in integrable form and integrate			C22	integrate $(a x+b)^{n}$	
		C4	find gradient at point on curve \mathcal{B} vv			C15	evaluate definite integrals			C23	integrate $p \sin (a x+b), p \cos (a x+b)$	
		C5	find equation of tangent to a polynomial/trig curve			C16	find area between curve and x-axis			C24	apply C20-C23 to problems	
		c6	find rate of change			C17	find area between two curves					
		C7	find when curve strictly increasing etc			C18	solve differential equations(variables separable)					
		C8	find stationary points/values			C19	apply C12-C18 to problems					
		C9	determinenature of stationary points									
		C10	sketch curvegiven the equation									
		C11	apply C1-C10 to problems eg optimise, greatest/least									
		T1	use gen. features of graphs of $f(x)=k \sin (a x+b)$,			T7	solve linear ${ }^{6}$ quadratic equations in radians			T12	solve sim.equs of form $k \cos (a)=p, k \sin (a)=q$	
			$f(x)=k \cos (a x+b)$; identify period/amplitude			T8	apply compound and double angle (c \& da) formulae			T13	express pcos $(x)+q \sin (x)$ in form $k \cos (x \pm a)$ etc	
		T2	use radians inc conversion from degrees $\mathcal{B} \mathrm{vv}$				in numerical $\mathcal{B}^{\text {literal cases }}$			T14	find max/min/zeros of $\operatorname{pcos}(x)+q \sin (x)$	
		T3	know and use exact values			т9	apply c \mathcal{E} da formulae in geometrical cases			T15	sketch graph of $y=p \cos (x)+q \sin (x)$	
		T4	recognise form of trig. function from graph			T10	use c \mathcal{B} da formulaewhen solving equations			T16	solve equ of the form $y=p \cos (r x)+q \sin (r x)$	
		T5	interpret trig. equations and expressions			T11	apply T\%-T10 to problems			T17	apply T12-T16 to problems	
		т6	apply T1-T5 to problems									

