

2008 Mathematics

Higher – Paper 1 and Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2008

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Mathematics Higher: Instructions to Markers

- 1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
- 2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
- 3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made.

This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.

4. Correct working should be ticked (√). This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (X or X√). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line.
Work which is correct but inadequate to score any marks should be corrected with a double

Work which is correct but inadequate to score any marks should be corrected with a double cross tick (\bigotimes).

- 5. The total mark for each section of a question should be entered in red in the **outer** right hand margin, opposite the end of the working concerned.
 - Only the mark should be written, **not** a fraction of the possible marks.
 - These marks should correspond to those on the question paper and these instructions.
- 6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked. Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer.
- 7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will normally be indicated in the marking instructions.
- 8. Do not penalise:
 - working subsequent to a correct answer
 - legitimate variations in numerical answers
 - correct working in the "wrong" part of a question
- omission of units
- bad form
- 2

Mathematics Higher: Instructions to Markers

- 9. No piece of work should be scored through without careful checking even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
- 10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
- 11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
- 12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.
- 13 Transcription errors: In general, as a consequence of a transcription error, candidates lose the opportunity of gaining either the first ic mark or the first pr mark.
- 14 Casual errors: In general, as a consequence of a casual error, candidates lose the opportunity of gaining the appropriate ic mark or pr mark.
- 15 **Do not write any comments on the scripts**. A **revised** summary of acceptable notation is given on page 4.
- 16 Throughout this paper, unless specifically mentioned, a correct answer with no working receives no credit.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

- 1 **Tick** correct working.
- 2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
- 3 Do **no**t write marks as fractions.
- 4 Put each mark **at the end** of the candidate's response to the question.
- 5 Follow through errors to see if candidates can score marks subsequent to the error.
- 6 Do **not** write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs

 \checkmark The tick. You are not expected to tick every line but of course you must check through the whole of a response. Bullets showing where marks are being allotted may be shown on scripts

- margins $\frac{dy}{dx} = 4x - 7$ 4x - 7 = 0 $x = \frac{7}{4}$ $\mathbf{2}$ $y = 3\frac{7}{8}$ C = (1, -1)Х $m = \frac{3 - (-1)}{4 - 1}$ $m_{rad} = \frac{4}{3}$ $m_{tgt} = \frac{-1}{\frac{4}{2}}$ $m_{tgt} = -\frac{3}{4}$ $y - 3 = -\frac{3}{4}(x - 2)$ 3 $x^2 - 3x = 28$ 1 X 1 $\sin(x) = 0.75 = inv\sin(0.75) = 48.6^{\circ}$
- X The cross and underline. Underline an error and place a cross at the end of the line.
- X The tick-cross. Use this to show correct work where you are **following through** subsequent to an error.

 \wedge The roof. Use this to show something is missing such as a crucial step in a proof or a 'condition' etc.

The tilde. Use this to indicate a minor transgression which is not being penalised (such as bad form).

The double cross-tick. Use this to show correct work but which is inadequate to score any marks. This may happen when working has been eased.

Remember - No comments on the scripts. No abreviations. No new signs. Please use the above and nothing else.

All of these are to help us be more consistent and accurate.

Note: There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error. These are all mistakes and as a consequence a mark is lost.

Page 5 lists the syllabus coding for each topic. This information is given in the legend underneath the question. The calculator classification is CN(calculator neutral), CR(calculator required) and NC(non-calculator).

T6					Ξ	Ē	_			С8 С8	C7	6	C2	Ç4	ន	C2	5	G8	G7	G6	G5	G4	G3	G2	G					A14	A13	A12	A11	A10	A9	A8	A2	A6	A5	Α4	Аз	A2	P1
interpret trig. equations and expressions apply T1-T5 to problems	recognise form of trig. function from graph	know and use exact values	use radians inc conversion from degrees & vv	f(x) = kcos(ax+b); identify period/amplitude	use gen. features of graphs of $f(x) = ksin(ax+b)$,	appig C1-C10 to provens eg opunise, greatest/teast	ample C1 C10 to maklance of antimized amost at /locat	sketch curneaging the equation	determinenature of stationary points	find stationary points/values	find when curve strictly increasing etc	find rate of change	find equation of tangent to a polynomial/trig curve	find gradient at point on curve & vv	express in differentiable form and differentiate	differentiate negative & fractional powers	differentiate sums, differences	apply G1-G7 to problems eq intersect., concur., collin.	find equation of median, altitude, perp. bisector	calculate mid-point	use property of perpendicular lines	interpret all equations of a line	find equation of a line	find gradient from 2 pts,/angle/equ. of line	use the distance formula					apply A10-A14 to problems	evaluate limit	decide when RR has limit/interpret limit	evaluate successive terms of a RR	use the notation u_n for the nth term	interpret loci such as st.lines, para, poly, circle	sketch/annotate graph given critical features	determine function(poly,exp,log) from graph & vv	interpret equations and expressions	complete the square	obtain a formula for composite function	sketch and annotate related functions	recognise general features of graphs:poly, exp, log	determine range/domain
T11 apply T7-T10 to problems		apply c & da formulae in geometr		T8 apply compound and double angle (c & da) formulae	T7 solve linear & quadratic equations in radians					C19 apply C12-C18 to problems	C18 solve differential equations(variables separable)	C17 find area between two curves	C16 find area between curve and x-axis	C15 evaluate definite integrals	C14 express in integrable form and integrate	C13 integrate with negative & fractional powers	C12 find integrals of px^n and $sums/diffs$		G15 apply G9-G14 to problems	G14 find if two circles touch	G13 find if/when line is tangent to circle	G12 find intersection of line & circle	G11 find equation of a tangent to a circle	G10 find the equation of a circle	G9 find C/R of a circle from its equation/other data				_	A25 find intersection of two polynomials	A24 find if line is tangent to polynomial	A23 find intersection of line and polynomial	A22 solve cubic and quartic equations	A21 use Rem Th. For values, factors, roots				A20 apply A15-A19 to solve problems	A19 form an equation with given roots	A18 given nature of roots, find a condition on coeffs	A17 find nature of roots of a quadratic	A16 solve a quadratic inequality	A15 use the general equation of a parabola
T17	116	T15	T14	T13	T12		+						C24	C23	C22	C21	C20			G30	G29	G28	G27	G26	G25	G24	G23	G22	G21	G20	G19	G18	G17	G16	-		A34	A33	A32	A31	A30	A29	A28
⁷ apply T12-T16 to problems		_			2 solve sim.equs of form $kcos(a)=p$, $ksin(a)=q$								4 apply C20-C23 to problems		2 integrate $(ax + b)^n$		$0 differentiate \ psin(ax+b), \ pcos(ax+b)$			apply G16-G29 to problems eg geometry probs.	• use the distributive law	3 calculate the angle between two vectors			5 given a ratio, find/interpret 3rd point/vector				_		Θ use: if \mathbf{u} , \mathbf{v} are parallel then $\mathbf{v} = k\mathbf{u}$		7 calculate the 3rd given two from A, B and vector AB	3 calculate the length of a vector			apply A28-A33 to problems	3 use relationships of the form $y = ax^n$ or $y = ab^x$	solve equations involving logarithms		solve equs of the form $A = Be^{kt}$ for A, B, k or t		3 use the laws of logs to simplify/find equiv. expression

2008 Higher Mathematics Paper 1 Section A

1.21

QU	part	mk	code	calc	source	ss	pd	ic	С	В	A	U1	U2	U 3
1.21	a	6	C8,C9	NC		1	3	2	6			6		
	b	5	A21,A22			1	3	1	5				5	
	С	4	C10					4	2	2		4		

 $\mathbf{6}$

5

4

A function f is defined on the set of real numbers by $f(x) = x^3 - 3x + 2$.

- (a) Find the coordinates of the stationary points on the curve y = f(x)and determine their nature.
- (b) (i) Show that (x-1) is a factor of $x^3 3x + 2$.
- (ii) Hence or otherwise factorise x³ 3x + 2 fully.
 (c) State the coordinates of the points where the curve with equation y = f(x) meets both the axes and hence sketch the curve.

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail

Notes

- 1 The "=0" shown at \bullet^1 must appear at least once before the \bullet^3 stage.
- 2 An unsimplified $\sqrt{1}$ should be penalised at the first occurrence.
- 3 •³ is only available as a consequence of solving f'(x) = 0.
- 4 The nature table must reflect previous working from \bullet^3 .
- 5 Candidates who introduce an extra solution at the \bullet^3 stage cannot earn \bullet^3 .
- 6 The use of the 2nd derivative is an acceptable strategy for \bullet^5 .
- 7 As shown in the Primary Method,
 (•³ and •⁴) and (•⁵ and •⁶) can be marked in series or in parallel.
- 8 The working for (b) may appear in (a) or vice versa. Full marks are available wherever the working occurs.

Notes

9 In Primary method \bullet^{8} and alternative \bullet^{9} , candidates must show some acknowledgement of the resulting "0". Although a statement wrt the zero is preferable, accept something as simple as "underlining the zero". Alternative Method: \bullet^{7} to \bullet^{10} 1 1 0 -3 2 \bullet^{7} 1 1 0 -3 2 \bullet^{8} 1 1 -2 1 1 -2 0

• f(1) = 0 so (x - 1) is a factor • 10 $x^2 + x - 2$

Notes

10 Evidence for ●¹² and ●¹³ may not appear until the sketch.
11●¹⁴ and ●¹⁵ are only available for the graph of a cubic.

Nota Bene

For candidates who omit the x^2 coeff. leading to •⁷ X •⁸ $\sqrt{\frac{1 | 1 -3 2}{1 -2 0}}$ •⁹ $\sqrt{f(1) = 0 \text{ so } (x - 1)....}$ •¹⁰ X $x^2 - 2x$ •¹¹ $\sqrt{x(x - 1)(x - 2)}$ **but** •¹⁰ X x - 2•¹¹ X (x - 1)(x - 2)

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail

Generic Marking Scheme	Primary Meth	od : Give 1 mark for each •
 •¹ ss know to differentiate •² pd differentiate •³ ss set derivative to -1 •⁴ pd factorise and solve •⁵ pd solve for y •⁶ ss use gradient •⁷ ic interpret result 	$ \begin{vmatrix} \bullet^4 & x \\ \bullet^5 & y \end{vmatrix} $ $ \bullet^6 & y = 4 - x \\ \bullet^7 & check (3, -1) \end{vmatrix} $	$\begin{array}{c c} term \ correct) \ s \ / \ i \ by \ \bullet^2 \\ x + 8 \ s \ / \ i \ by \ \bullet^3 \\ x + 8 = -1 \\ \hline \bullet^4 & \left \begin{array}{c} \bullet^5 \\ 1 \\ 3 \end{array} \right \\ 3 & \left \begin{array}{c} -3 \end{array} \right \\ x \ has \ gradient = -1 \\ , -3) \ and \ reject \\ 3) \ and \ accept \end{array}$
s in (a)	Common Error	Alternative for \bullet^6 and \bullet^7
• ¹ $\sqrt{\frac{dy}{dx}} =(1 \ term \ correct)$ • ² $\sqrt{3x^2 - 12x + 8}$ For candidates who now guess $x = 1$ and check that $\frac{dy}{dx} = -1$, only	• ¹ $\sqrt{\frac{dy}{dx}} =(1 \ term \ correct)$ • ² $\sqrt{3x^2 - 12x + 8}$ • ³ $X \ 3x^2 - 12x + 8 = 0$ • ⁴ $X \ irrespective of what is written.$ • ⁵ X	•6 $\begin{cases} x^3 - 6x^2 + 8x = 4 - x \\ x^3 - 6x^2 + 9x - 4 = 0 \\ (x - 1)(x^2 - 5x + 4) \\ (x - 4)(x - 1) \end{cases}$

one further mark (\bullet^3) can be awarded. Guessing and checking further answers gains no more credit.

An "=0" must appear at least once in the two lines shown in the alternative for \bullet^6 and \bullet^7 .

2

repeated root implies tangent at (1,3).

 \bullet^7

1 22	qu	part	mk	A3	calc	source	SS	pd	ic	С	В	А	U1	U2	U 3
1.20	1.23	a	3	A4	NC				3	3			3		
		b	5	A31			2	2	1		1	4			5

Functions f, g and h are defined on suitable domains by $f(x) = x^2 - x + 10$, g(x) = 5 - x and $h(x) = \log_2 x$.

- (a) Find expressions for h(f(x)) and h(g(x)).
- (b) Hence solve h(f(x)) h(g(x)) = 3

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail.

Generic Marking Scheme Primary Method : Give 1 mark for each • $h(f(x)) = h(x^2 - x + 10) s / i by \bullet^2$ •1 \mathbf{ic} interpretation composition •2 $\log_2(x^2 - x + 10)$ •² interpretation composition ic •3 $\log_2(5-x)$ \mathbf{ic} interpretation composition •3 $\log_2\left(\frac{x^2 - x + 10}{5 - x}\right)$ use log laws \mathbf{SS} •5 convert to exponential form \mathbf{SS} •6 $\frac{x^2 - x + 10}{5 - x} = 2^3$ pd process conversion express in standard form pd $x^2 - x + 10 = 8(5 - x)$ find valid solutions ic $x^2 + 7x - 30 = 0$ $x=3,\ -10$

Notes

- 1 In (a) 2 marks are available for finding one of h(f(x)) or h(g(x)) and the third mark is for the other.
- 2 Treat $\log_2 x^2 x + 10$ and $\log_2 5 x$ as bad form.
- 3 The omission of the base should not be penalised in \bullet^2 to \bullet^4 .
- 4 \bullet^7 is only available for a quadratic equation and \bullet^8 must be the follow-through solutions.

Common Error 1

•⁴ X
$$\log_2(x^2 + 5) = 3$$

•⁵ $\sqrt{x^2 + 5} = 2^3$
•⁶ X $x^2 = 3$
•⁷ X $x = \pm \sqrt{3}$
•⁸ X not available

Common Error 2

•⁴
$$\sqrt{\log_2\left(\frac{x^2-x+10}{5-x}\right)}$$

 $\log_2\left(\frac{x^2-x+10}{5-x}\right)$
 $\log_2\left(x^2-x+10\right)$
 $\log_2\left(x^2-x+10\right)$
 $\log_2\left(x^2-x+10\right)$
 $\log_2\left(x^2+2\right)=3$
•⁵ $X\sqrt{x^2+2}=2^3$
•⁶ X $x=\pm\sqrt{6}$
•⁷ X not available
•⁸ X not available

Common Error 3

•⁴ X not available •⁵ $\sqrt{\log_2(x^2 - x + 10) - \log_2(5 - x)} = \log_2 8$ •⁶ X $x^2 - x + 10 - (5 - x) = 8$

3

5

- •⁷ X not available
- •⁸ X not available

2.01

qu	part	mk	code	calc	source	SS	pd	ic	С	В	А		U1	U2	U 3
2.01	a	4	G7	CN		2		2	4				4		
	b	3	G7	CN		1	1	1	3				3		
	С	3	C8	CN		1	2		3				3		
$\begin{array}{ c c c c c c c c c c c c c$															

4

3

3

The vertice shown in the diagram.

The broken line represents the perpendicular bisector of BC.

- (a) Show that the equation of the perpendicular bisector of BC is y = 2x - 5.
- (b) Find the equation of the median from C.
- (c) Find the coordinates of the point of intersection of the perpendicular bisector of BC and the median from C.

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail

Primary Method : Give 1 mark for each •
• 1 $m_{\rm BC} = -\frac{1}{2}$ stated explicitly • 2 $m_{\perp} = 2$ stated / implied by • 4 • 3 midpoint of BC = (1, -3) • 4 $y + 3 = 2(x - 1)$ and complete • 5 midpoint of AB = (2,4) • 6 $m_{\rm median} = -3$ • 7 $y + 5 = -3(x - 5)$ or $y - 4 = -3(x - 2)$ • 8 use $y = 2x - 5$ y = -3x + 10 • 9 $x = 3$ • 10 $y = 1$
_

No	tes
In	(a)

•⁴ is only available as a consequence of 1 attempting to find and use both a

perpendicular gradient and a midpoint. To gain \bullet^4 some evidence of completion 2

needs to be shown. The minimum requirements for this evidence is as shown:

$$y+3 = 2(x-1)$$
$$y+3 = 2x-2$$
$$y = 2x-5$$

3 •⁴ is only available for completion to y = 2x - 5 and nothing else.

Alternative for \bullet^4 : 4

•⁴ may be obtained by using y = mx + c

Notes In (b)

- 5 \bullet^7 is only available as a consequence of finding the gradient via a midpoint.
- 6 For candidates who find the equation of the perpendicular bisector of AB, only \bullet^5 is available.

In (c)

 $\overline{7}$ \bullet^8 is a strategy mark for juxtaposing the two correctly rearranged equations.

Follow - throughs

Note that from an incorrect equation in (b), full marks are still available in (c). Please follow-through carefully.

Cave

X

Candidates who find the median, angle bisector or altitude need to show the triangle is isosceles to gain full marks in (a). For those candidates who do not justify the isosceles triangle, marks may be allocated as shown below: Altitude Median $\sqrt{}$ $\sqrt{}$ Х $\sqrt{}$ $\sqrt{}$ X

Х

2.02	qu	part	mk	code	calc	source	SS	pd	ic	С	В	A		U1	U2	U 3
2.02	2.02	a	2	G25	CN	8202			2	2						2
		b	2	G25	CN			1	1	2						2
		С	5	G28	CR		1	4		5						5
The diagram	m shows a cuboid OABC,DEFG.															τV
F is the point	t(8, 4, 6)				Z	G				F(8, 4, 0						
P divides AE	in the ra	tio 2:1	L.								D	\square				
Q is the mid	point of C	G.									D			/	E	
												Q			Р	
(a) State the	e coordina	ates of	P and	d Q.			2					C				
(b) Write do	own the co	ompon	ents o	of \overrightarrow{PQ} and \overrightarrow{PA} .			2						∠ ^B			
(c) Find the	size of a	igle Q	PA.				5				$\overline{\mathcal{A}}$				Á	X

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail.

Gen	neric Ma	rking Scheme	Prim	ary Method : Give 1 mark for each •
\bullet^1	ic	interpret ratio	\bullet^1	P = (8, 0, 4)
\bullet^2	ic	interpret ratio	\bullet^2	P = (8, 0, 4) Q = (0, 4, 3)
\bullet^3	pd	process vectors		\rightarrow (-8)
\bullet^4	ic	interpret diagram	• ³	$PQ = \begin{vmatrix} 4 \end{vmatrix}$
\bullet^5	\mathbf{ss}	know to use scalar product		$\left(-1\right)$
\bullet^6	pd	find scalar product		\rightarrow $\begin{pmatrix} 0 \end{pmatrix}$
• ⁷	pd	find magnitude of vector	\bullet^4	$PA = \begin{bmatrix} 0 \end{bmatrix}$
• ⁸	pd	find magnitude of vector		$(-4) \longrightarrow \longrightarrow$
•9	pd	evaluate angle	• ⁵	$\cos \text{QPA} = - \underbrace{PQPA}_{\text{main or eq}} stated \ / \ implied \ by \ \bullet^9$
				PQ $ $ PA $ $
			• ⁶	$\overrightarrow{PQ.PA} = 4$
			7	$ \overrightarrow{PO} = \sqrt{81}$

$$|\overrightarrow{PQ}| = \sqrt{81}$$

 $|\overrightarrow{PA}| = \sqrt{16}$
 $83.6^{\circ}, 1.459 \ radians, 92.9 \ gradians$

.

.

- 2 Treat column vectors written as coordinates as bad form.
- 3 For candidates who do not attempt •⁹, the formula quoted at •⁵ must relate to the labelling in order for •⁵ to be awarded.

					•		000,
Exen	nplar ⁻	1					
\bullet^3, \bullet^4	X, X		$\overrightarrow{OA} =$	$= \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix}$	(→ DQ =	$= \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$
•5	X	cos	AOQ	$=\frac{\overline{0}}{ \overline{0} }$	$\vec{A} = \vec{A} \cdot \vec{A}$	$\vec{\underline{Q}}$	
•6	\checkmark	\overrightarrow{OA}		= 0			
• ⁷	 	$ \overline{\mathbf{O}} $	$\vec{A} \models $	64			
•8	\checkmark		$\vec{\hat{2}} \models $	25			
•9	\checkmark	90°					
Exen	nplar 2						
• ³ ,• ⁴	X, X		$\overrightarrow{OA} =$	$= \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix}$	(→ DQ =	$= \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$

OA.OQ = 0

 90°

 $\sqrt{}$

•⁸

Alternative for
$$\bullet^5$$
 to \bullet^8
 \bullet^5 cos QPA = $\frac{PA^2 + PQ^2 - QA^2}{PA^2 + PQ^2 - QA^2}$

$$\begin{array}{c} cos QPA = \underbrace{-2PA \times PQ} \\ 2PA \times PQ \end{array}$$

$$\begin{array}{c} \overrightarrow{PA} \models \sqrt{16} \\ \overrightarrow{PQ} \models \sqrt{81} \\ \overrightarrow{PQ} \models \sqrt{89} \end{array}$$

2008 Marking Scheme v13

2 03	qu	part	2	code	calc	source	SS	pd	ic	C	В	A	U1	U2	U 3
2.00	2.03	a	2	Т4	CN	8203			2	2			2		
		b	4	т13	CR		1	2	1	4					4
		с	2	C20	CN			1	1	1	1				2

- (a) (i) Diagram 1 shows part of the graph of y = f(x), where $f(x) = p \cos x$. Write down the value of p.
 - (ii) Diagram 2 shows part of the graph of y = g(x), where $g(x) = q \sin x$. Write down the value of q.
- (b) Write f(x) + g(x) in the form $k \cos(x+a)$ where k > 0 and $0 < a < \frac{\pi}{2}$.
- (c) Hence find f'(x) + g'(x) as a single trigonometric expression.

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail

Gen	eric Ma	rking Scheme	Primary Method	Primary Method : Give 1 mark for each •						
\bullet^1	ic	interpret graph	• ¹ $p = \sqrt{7}$;						
\bullet^2	ic	interpret graph	$\bullet^2 \qquad q = -3$							
\bullet^3	\mathbf{SS}	expand	$\bullet^3 \qquad k\cos x$	$\cos a - k \sin x \sin a$ stated explicitly						
• ⁴	ic	compare coefficients	• $k \cos a =$	$=\sqrt{7}$ and $k\sin a = 3$ stated explicitly						
• ⁵	pd	process "k"	• ⁵ $k = 4$							
\bullet^6	pd	process "a"	• ⁶ $a \approx 0.8$	48						
•7	\mathbf{SS}	state equation	\bullet^7 $4\cos(x)$	+ 0.848)						
• ⁸	pd	differentiate	\bullet^8 $-4\sin($	x + 0.848)						

Notes

- In (a) 1 For \bullet^1 accept p = 2.6 leading to k = 4.0, a = 0.86 in (b). In (b) 2 $k(\cos x \cos a - \sin x \sin a)$ is
- acceptable for \bullet^3 . 3 Treat $k \cos x \cos a - \sin x \sin a$ as
- bad form only if the equations at the \bullet^4 stage both contain k.
- 4 $4(\cos x \cos a \sin x \sin a)$ is acceptable for \bullet^3 and \bullet^5 .
- 5 $k = \sqrt{16}$ does not earn \bullet^5 .
- 6 No justification is needed for \bullet^5 .
- 7 Candidates may use any form of wave equation as long as their final answer is in the form $k\cos(x+a)$. If not, then \bullet^6 is not available.

Notes
8 Candidates who use degrees throughout this question lose •⁶, •⁷ and •⁸.

Common Error 1

(sic) $q = 3 \implies k = 4, \tan a = -\frac{3}{\sqrt{7}}$ $\Rightarrow a = 5.44 \text{ or } -0.85$ $\bullet^2 X, \bullet^3 \sqrt{4}, \bullet^4 \sqrt{4}, \bullet^5 \sqrt{4}, \bullet^6 \sqrt{4}$

Common Error 2

(sic) $q = 3 \implies k = 4, \tan a = -\frac{3}{\sqrt{7}}$ $\Rightarrow a = 0.85$ $\bullet^2 X, \bullet^3 \sqrt{, \bullet^4} \sqrt{, \bullet^5} \sqrt{, \bullet^6} X$ Note that \bullet^6 is not awarded as it is not consistent with previous working. Alternative Method (for \bullet^7 and \bullet^8) If: $f'(x) + g'(x) = -\sqrt{7} \sin x - 3 \cos x$ then \bullet^7 is only available once the candidate has reached e.g. "choose $k \sin(x + a)$ $\Rightarrow k \sin a = -3, k \cos a = -7$." \bullet^8 is available for evaluating k and a.

2008 Marking Scheme v13

2.04	1	qu	part	mk	code	calc	source	SS		ic	С	В	A		U1	U2	U3	
	Ŧ	2.04	a	2	G9	CN	8204			2	2					2		
			b	4	G14	CN		1	1	2	2	2				4		
			С	5	G12	CN		1	4			5				5		
(a)	Write d	own the	centr	e an	d calculate the	radius	of the circ	ele wit	th equ	iation	x^2 -	$+ y^{2} -$	- 8x +	-4y - 3	38 = 0).		2
(b)	A secon	d circle	has eo	quati	on $(x-4)^2 + ($	$(y-6)^2$	= 26.											
	Find the	e distanc	e bet	ween	the centres of	these t	wo circles	and	hence	e shov	v that	t the	circles	s inters	sect.			4
(c)	The line	e with eq	quatio	n y =	=4-x is a con	nmon c	hord pass	ing th	rough	n the	point	s of ii	nterse	ction c	of the t	two ci	rcles.	
	Find the	e coordii	nates	of th	e points of inte	ersection	n of the tw	vo cir	cles.									5

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail.

Gen	eric Ma	rking Scheme	
1	ic	state centre of circle	
2	ic	find radius of circle	
3	ic	state centre and radius	
4	pd	find distance between centres	
5	\mathbf{SS}	find sum of radii	
5	ic	interpret result	
	\mathbf{SS}	know to and substitute	
3	pd	start process	
)	pd	write in standard form	
.0	pd	solve for x	
11	pd	solve for y	

Primary Method : Give 1 mark for each •							
\bullet^1	(-4, -2)						
• ²	$\sqrt{58}~(\approx 7.6)$						
	(4,6) and $\sqrt{26}$ (≈ 5.1) $s / i \bullet^4$ and \bullet^5						
• ⁴	$d_{centres} = \sqrt{128}$ accept 11.3						
• ⁵	$\sqrt{58} + \sqrt{26}$ accept 12.7						
\bullet^6	compare 12.7 and 11.3						
• ⁷	$x^2 + (4-x)^2 + \dots$						
• ⁸	$x^2 + 16 - 8x + x^2 + \dots$						
• ⁹	$2x^2 - 4x - 6 = 0$						
	\bullet^{10} \bullet^{11}						
\bullet^{10}	$x \begin{vmatrix} 3 \\ -1 \end{vmatrix}$						
\bullet^{11}	$y \mid 1 \mid 5 \mid$						

alt. for \bullet^7 to \bullet^{11} :

y

x

 \bullet^7

•8

•9

 \bullet^{10}

•11

 $(4-y)^2 + \dots$

 $y^2 - 6y + 5 = 0$

•¹⁰

1

3

 $y^2 - 8y + 16 + y^2 + \dots$

 \bullet^{11}

5

-1

Notes In (a)

2

1	If a linear equation is obtained at the \bullet^9
	stage, then \bullet^9 , \bullet^{10} and \bullet^{11} are not
	available.

- 2 Solving the circles simultaneously to obtain the equation of the common chord gains no marks.
- 3 The comment given at the \bullet^6 stage must be consistent with previous working.

Solve the equation $\cos 2x^{\circ} + 2\sin x^{\circ} = \sin^2 x^{\circ}$ in the interval $0 \le x < 360$.

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail.

Gen	Generic Marking Scheme						
\bullet^1	ss	use double angle formula					
\bullet^2	pd	obtains standard form					
		(i.e. " = 0 ")					
\bullet^3	pd	factorise					
\bullet^4	pd	process factors					
\bullet^5	pd	completes solutions					

Prin	Primary Method : Give 1 mark for each •							
\bullet^1	$\cos 2x = 1 - 2\sin^2 x$	$x^{2}x$						
\bullet^2	$3\sin^2 x - 2\sin x - 1 = 0$							
\bullet^3	$(3\sin x + 1)(\sin x$	(-1) = 0						
	\bullet^4	•5						
•4	$\sin x = -\frac{1}{3}$	$\sin x = 1$						
• ⁵	199.5°, 340.5°	90°						

5

Notes

- 1 •¹ is not available for $1 2\sin^2 A$ with no further working.
- 2 \bullet^2 is only available for the three terms shown written in any correct order.
- 3 The "=0" has to appear at least once "en route" to \bullet^3 .
- 4 \bullet^4 and \bullet^5 are only available for solving a quadratic equation.

2.06	qu	part	mk	code	calc	source	SS	pd	ic	С	В	А	_	U1	U2	U 3
2.00	2.06		3	G3	CN	8206	1		2			3		3		
			6	C11	CN		2	2	2		6			6		
				ne joining (and R lie o	. ,	,	= t.						6 T			
	that QR = the coordin			for which t	he rectang	le has a		3						\setminus		
maxi	num area.							6				_	P 0 t	R	$\frac{1}{3}$	\xrightarrow{X}
The prin	nary method is	based o	n this g	eneric marking s	cheme which r	nay be used a	s a guide	for any	method	1 not sho	own in de			K	3 (

Gen	neric Ma	rking Scheme	Pri	Primary Method : Give 1 mark for each •				
\bullet^1	\mathbf{SS}	know and use e.g. similar triangles,	\bullet^1	ΔOST , RSQ are similar s / i by \bullet^2				
9		trigonometry or gradient	\bullet^2	$\frac{\text{QR}}{6} = \frac{3-t}{3} \text{ or equivalent}$				
\bullet^2	ic	establish equation						
\bullet^3	ic	find a length	• ³	QR = 6 - 2t				
•4	\mathbf{SS}	know how and find area	•4	A(t) = t(6 - 2t)				
•5	\mathbf{SS}	set derivative of the area function to zero	• ⁵	A'(t) = 0				
•6	pd	differentiate	• ⁶	6-4t				
•7	pd	solve	•7	$t = \frac{3}{2}$				
•8	ic	justify stationary point	• ⁸	e.g. nature table				
•9	ic	state coordinates	• ⁹	$\mathbf{Q} = \left(\frac{3}{2}, 3\right)$				

Notes

- 1 "y = 6 2x" appearing *ex nihilo* can be awarded neither \bullet^1 nor \bullet^2 .
 - •³ is still available with some justification e.g. OR = t gives y = 6 - 2t.
- 2 The "=0" has to appear at least once before the \bullet^7 stage for \bullet^5 to be awarded.
- Do not penalise the use of $\frac{dy}{dx}$ in lieu of 3 A'(t) for instance in the nature table.
- 4The minimum requirements for the nature table are shown on the right. Of course other methods may be used to justify the nature of the stationary point(s).

Variation 1:

•

•¹
$$\tan 'S' = \frac{6}{3}$$

•² $\tan 'S' = \frac{QR}{3-t}$ and equate

Variation 2:

•
$$\sqrt{m_{\text{line}}} = -2$$
 $s / i by \bullet^2$
• $\sqrt{\text{equation of line } : y = -2x + 6}$

Variation 3

$$\sqrt{m_{line}} = -2$$

•²
$$\sqrt{\text{equation of line }: y = 6 - 2x}$$

Variation 4

•

•¹ X (nothing stated)
•² X equation of line
$$: y = 6 - 2x$$

Alternative Method: (for \bullet^5 to \bullet^8) \bullet^5 strategy to find roots \Rightarrow t.p.s •6 t = 0, t = 3•7 max t.p. since coeff of " t^2 " < 0 •8 turning pt at $t = \frac{3}{2}$ Nature Table minimum requirements for •8 $\frac{3}{2}$ A'0 +•8

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail.

Gen	eric Ma	rking Scheme	Pr	imary Meth	nod: Give 1 mark for each •
• ¹ • ² • ³ • ⁴ • ⁵ • ⁶ • ⁷ • ⁸	ic pd ss pd ic pd ss pd	interpret limits find both <i>x</i> -values know to integrate integrate state limits evaluate limits select "what to add to a completes a valid strate		$x = \int (3)^{3}$ $32x$ $[\dots]_{2}^{3}$ $19\frac{1}{3}$ $e.g.$	$19\frac{1}{3} - 14 + 20$ and then double s / i by \bullet^8
14 may be a For integred strategy: $x = \sqrt{16}$ $\int \left(16 - \frac{1}{2}\right)^{1/2}$	awarded cating "ale choose $\overline{b} - \frac{1}{2}y$) $\overline{b}^{2} - \frac{1}{2}y$	$dx = \left[32x - \frac{2}{3}x^3\right]$ • ³ and • ⁴ ONLY. ong the y - axis" to integrate along y-axis	Exemplar 1(\bullet^{3} to \bullet^{8}) • $3 \int (32 - 2x^{2} - 14) dx$ • $4 18x - \frac{2}{3}x^{3}$ • $5 []_{-3}^{3}$ • $6 72$ • $7 e.g. \ 72 - \int_{-2}^{2} (32 - 2x^{2} - 24)$ • $8 50\frac{2}{3}$ or	3	Variations (• ³ to • ⁶) The following are examples of sound opening integrals which will lead to the area after one more integral at most. $\int_{0}^{2} (32 - 2x^{2}) dx = \dots = 58\frac{2}{3}$ $\int_{0}^{3} (32 - 2x^{2}) dx = \dots = 78$ $\int_{2}^{3} (32 - 2x^{2}) dx = \dots = 19\frac{1}{3}$ $\int_{0}^{2} (32 - 2x^{2} - 24) dx = \dots = 10\frac{2}{3}$
$-2 \cdot \frac{2}{3} \left(16 \\ \left[\dots \right]_{14}^{24} \\ -\frac{4}{3} \left(4^{\frac{3}{2}} - \frac{4}{3} \times 10^{-3}\right) \\ 2 \times \dots \\ 50 \cdot \frac{2}{3} $	$(9^{\frac{3}{2}})$		• $\begin{bmatrix} \bullet^5 & [\dots]_0^3 \\ \bullet^6 & 36 \\ \bullet^7 & e.g. \ 2 \times \left[36 - \int_0^2 (32 - 2x^2 - x^2) \right] \end{bmatrix}$	-24) dx	$\int_{0}^{3} (32 - 2x^{2} - 14)dx = \dots = 36$