# X100/301

NATIONAL QUALIFICATIONS 2007 TUESDAY, 15 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER Units 1, 2 and 3 Paper 1 (Non-calculator)

### **Read Carefully**

- 1 Calculators may NOT be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.





### **FORMULAE LIST**

### Circle:

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ . The equation  $(x - a)^2 + (y - b)^2 = r^2$  represents a circle centre (a, b) and radius r.

**Scalar Product:** 

 $a.b = |a| |b| \cos \theta$ , where  $\theta$  is the angle between a and b

or 
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ .

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

| f(x)   | f'(x)       |
|--------|-------------|
| sin ax | $a\cos ax$  |
| cos ax | $-a\sin ax$ |

Table of standard integrals:

| f(x)   | $\int f(x) dx$            |
|--------|---------------------------|
| sin ax | $-\frac{1}{a}\cos ax + C$ |
| cos ax | $\frac{1}{a}\sin ax + C$  |

## ALL questions should be attempted.

Marks

1. Find the equation of the line through the point (-1, 4) which is parallel to the line with equation 3x - y + 2 = 0.

3

2. Relative to a suitable coordinate system A and B are the points (-2, 1, -1) and (1, 3, 2) respectively.

A, B and C are collinear points and C is positioned such that BC = 2AB.

Find the coordinates of C.



4

3. Functions f and g, defined on suitable domains, are given by  $f(x) = x^2 + 1$  and g(x) = 1 - 2x.

Find:

(a) g(f(x));

2

(b) g(g(x)).

2

**4.** Find the range of values of k such that the equation  $kx^2 - x - 1 = 0$  has no real roots.

\_

5. The large circle has equation  $x^2 + y^2 - 14x - 16y + 77 = 0.$ 

Three congruent circles with centres A, B and C are drawn inside the large circle with the centres lying on a line parallel to the x-axis.

This pattern is continued, as shown in the diagram.

Find the equation of the circle with centre D.



5

[Turn over

**6.** Solve the equation  $\sin 2x^{\circ} = 6\cos x^{\circ}$  for  $0 \le x \le 360$ .

4

7. A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{1}{4}u_n + 16, \ u_0 = 0.$$

(a) Calculate the values of  $u_1$ ,  $u_2$  and  $u_3$ .

3

Four terms of this sequence,  $u_1$ ,  $u_2$ ,  $u_3$  and  $u_4$  are plotted as shown in the graph.

As  $n \to \infty$ , the points on the graph approach the line  $u_n = k$ , where k is the limit of this sequence.

- (b) (i) Give a reason why this sequence has a limit.
  - (ii) Find the exact value of k.



 $u_n$ 

3

- 8. The diagram shows a sketch of the graph of  $y = x^3 4x^2 + x + 6$ .
  - (a) Show that the graph cuts the x-axis at (3, 0).
  - (b) Hence or otherwise find the coordinates of A.
  - (c) Find the shaded area.



3

1

5

- **9.** A function f is defined by the formula  $f(x) = 3x x^3$ .
  - (a) Find the exact values where the graph of y = f(x) meets the x- and y-axes.

2

(b) Find the coordinates of the stationary points of the function and determine their nature.

7

(c) Sketch the graph of y = f(x).

1

Marks

- 10. Given that  $y = \sqrt{3x^2 + 2}$ , find  $\frac{dy}{dx}$ .
- 11. (a) Express  $f(x) = \sqrt{3}\cos x + \sin x$  in the form  $k\cos(x a)$ , where k > 0 and  $0 < a < \frac{\pi}{2}$ .
  - (b) Hence or otherwise sketch the graph of y = f(x) in the interval  $0 \le x \le 2\pi$ .

[END OF QUESTION PAPER]

## X100/303

NATIONAL QUALIFICATIONS 2007 TUESDAY, 15 MAY 10.30 AM - 12.00 NOON MATHEMATICS HIGHER Units 1, 2 and 3 Paper 2

### **Read Carefully**

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.





#### **FORMULAE LIST**

### Circle:

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ . The equation  $(x-a)^2 + (y-b)^2 = r^2$  represents a circle centre (a, b) and radius r.

**Scalar Product:** 

 $a.b = |a| |b| \cos \theta$ , where  $\theta$  is the angle between a and b

or 
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where  $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ .

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

| f(x)   | f'(x)       |
|--------|-------------|
| sin ax | a cos ax    |
| cos ax | $-a\sin ax$ |

Table of standard integrals:

$$f(x) \qquad \int f(x)dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$

$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

### ALL questions should be attempted.

Marks

1. OABCDEFG is a cube with side 2 units, as shown in the diagram.

B has coordinates (2, 2, 0).

P is the centre of face OCGD and Q is the centre of face CBFG.



(a) Write down the coordinates of G.

1

(b) Find p and q, the position vectors of points P and Q.

2

(c) Find the size of angle POQ.

5

2. The diagram shows two right-angled triangles with angles c and d marked as shown.



(a) Find the exact value of  $\sin(c+d)$ .

4

(b) (i) Find the exact value of  $\sin 2c$ .

4

(ii) Show that cos 2d has the same exact value.

3. Show that the line with equation y = 6 - 2x is a tangent to the circle with equation  $x^2 + y^2 + 6x - 4y - 7 = 0$  and find the coordinates of the point of contact of the tangent and the circle.

6

- 4. The diagram shows part of the graph of a function whose equation is of the form  $y = a\sin(bx^\circ) + c$ .
- O P 60° 120
- (a) Write down the values of a, b and c.

3

3

(b) Determine the exact value of the x-coordinate of P, the point where the graph intersects the x-axis as shown in the diagram.

[Turn over

5. A circle centre C is situated so that it touches the parabola with equation  $y = \frac{1}{2}x^2 - 8x + 34$  at P and Q.



(a) The gradient of the tangent to the parabola at Q is 4. Find the coordinates of Q.

5

(b) Find the coordinates of P.

2

(c) Find the coordinates of C, the centre of the circle.

2

**6.** A householder has a garden in the shape of a right-angled isosceles triangle.

It is intended to put down a section of rectangular wooden decking at the side of the house, as shown in the diagram.



- (a) (i) Find the exact value of ST.
  - (ii) Given that the breadth of the decking is x metres, show that the area of the decking, A square metres, is given by

$$A = \left(10\sqrt{2}\right)x - 2x^2.$$

(b) Find the dimensions of the decking which maximises its area.

5

7. Find the value of  $\int_0^2 \sin(4x+1) dx$ .

4

8. The curve with equation  $y = \log_3(x - 1) - 2.2$ , where x > 1, cuts the x-axis at the point (a, 0).

Find the value of a.

4

2

2

**9.** The diagram shows the graph of  $y = a^x$ , a > 1.

On separate diagrams, sketch the graphs of:



(b) 
$$v = a^{1-x}$$
.



The diagram shows the graphs of a cubic function y = f(x) and its derived function y = f'(x).

Both graphs pass through the point (0, 6).

The graph of y = f'(x) also passes through the points (2, 0) and (4, 0).



- (a) Given that f'(x) is of the form k(x-a)(x-b):
  - (i) write down the values of a and b;
  - (ii) find the value of k.

- 3
- (b) Find the equation of the graph of the cubic function y = f(x).

- Two variables x and y satisfy the equation  $y = 3 \times 4^x$ . 11.
  - (a) Find the value of a if (a, 6) lies on the graph with equation  $y = 3 \times 4^x$ .
- 1

(b) If  $(-\frac{1}{2}, b)$  also lies on the graph, find b.

1

4

(c) A graph is drawn of  $\log_{10} y$  against x. Show that its equation will be of the form  $\log_{10} y = Px + Q$  and state the gradient of this line.

[END OF QUESTION PAPER]