## X100/301

NATIONAL
QUALIFICATIONS 2008

TUESDAY, 20 MAY 9.00 AM - 10.30 AM

MATHEMATICS HIGHER
Paper 1
(Non-calculator)

## Read carefully

Calculators may NOT be used in this paper.

## Section A - Questions 1-20 (40 marks)

Instructions for completion of Section A are given on page two.
For this section of the examination you must use an HB pencil.

## Section B (30 marks)

1 Full credit will be given only where the solution contains appropriate working.
2 Answers obtained by readings from scale drawings will not receive any credit.


## FORMULAE LIST

## Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre $(a, b)$ and radius $r$.

## Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} . \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

| $f(x)$ | $f^{\prime}(x)$ |
| :---: | :---: |
| $\sin a x$ | $a \cos a x$ |
| $\cos a x$ | $-a \sin a x$ |

Table of standard integrals:

| $f(x)$ | $\int f(x) d x$ |
| :---: | :---: |
| $\sin a x$ | $-\frac{1}{a} \cos a x+C$ |
| $\cos a x$ | $\frac{1}{a} \sin a x+C$ |

## SECTION A

## ALL questions should be attempted.

1. A sequence is defined by the recurrence relation

$$
u_{\mathrm{n}+1}=0 \cdot 3 u_{\mathrm{n}}+6 \text { with } u_{10}=10
$$

What is the value of $u_{12}$ ?
A 6.6
B 7.8
C 8.7
D 9.6
2. The $x$-axis is a tangent to a circle with centre $(-7,6)$ as shown in the diagram.


What is the equation of the circle?
A $(x+7)^{2}+(y-6)^{2}=1$
B $(x+7)^{2}+(y-6)^{2}=49$
C $(x-7)^{2}+(y+6)^{2}=36$
D $(x+7)^{2}+(y-6)^{2}=36$
3. The vectors $\boldsymbol{u}=\left(\begin{array}{r}k \\ -1 \\ 1\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{l}0 \\ 4 \\ k\end{array}\right)$ are perpendicular.

What is the value of $k$ ?
A 0
B 3
C 4
D 5
4. A sequence is generated by the recurrence relation $u_{n+1}=0 \cdot 4 u_{n}-240$.

What is the limit of this sequence as $n \rightarrow \infty$ ?
A -800
B -400
C 200
D 400
5. The diagram shows a circle, centre $(2,5)$ and a tangent drawn at the point $(7,9)$. What is the equation of this tangent?


A $y-9=-\frac{5}{4}(x-7)$

B $\quad y+9=-\frac{4}{5}(x+7)$
C $\quad y-7=\frac{4}{5}(x-9)$
D $y+9=\frac{5}{4}(x+7)$
6. What is the solution of the equation $2 \sin x-\sqrt{3}=0$ where $\frac{\pi}{2} \leq x \leq \pi$ ?

A $\frac{\pi}{6}$
B $\frac{2 \pi}{3}$
C $\frac{3 \pi}{4}$
D $\frac{5 \pi}{6}$
7. The diagram shows a line $L$; the angle between $L$ and the positive direction of the $x$-axis is $135^{\circ}$, as shown.


What is the gradient of line L?

A $-\frac{1}{2}$
B $-\frac{\sqrt{3}}{2}$
C $\quad-1$

D $\frac{1}{2}$
8. The diagram shows part of the graph of a function with equation $y=f(x)$.


Which of the following diagrams shows the graph with equation $y=-f(x-2)$ ?

A


B


C


D

9. Given that $0 \leq a \leq \frac{\pi}{2}$ and $\sin a=\frac{3}{5}$, find an expression for $\sin (x+a)$.

A $\sin x+\frac{3}{5}$
B $\frac{4}{5} \sin x+\frac{3}{5} \cos x$
C $\frac{3}{5} \sin x-\frac{4}{5} \cos x$
D $\frac{2}{5} \sin x-\frac{3}{5} \cos x$
10. Here are two statements about the roots of the equation $x^{2}+x+1=0$ :
(1) the roots are equal;
(2) the roots are real.

Which of the following is true?
A Neither statement is correct.
B Only statement (1) is correct.
C Only statement (2) is correct.
D Both statements are correct.
11. $\mathrm{E}(-2,-1,4), \mathrm{P}(1,5,7)$ and $\mathrm{F}(7,17,13)$ are three collinear points.

P lies between E and F.
What is the ratio in which P divides EF?
A $1: 1$
B 1:2
C 1:4
D 1:6
12. In the diagram RSTU, VWXY represents a cuboid.
$\overrightarrow{\mathrm{SR}}$ represents vector $\boldsymbol{f}, \overrightarrow{\mathrm{ST}}$ represents vector $\boldsymbol{g}$ and $\overrightarrow{\mathrm{SW}}$ represents vector $\boldsymbol{h}$. Express $\overrightarrow{\mathrm{VT}}$ in terms of $\boldsymbol{f}, \boldsymbol{g}$ and $\boldsymbol{h}$.


A $\overrightarrow{\mathrm{VT}}=\boldsymbol{f}+\boldsymbol{g}+\boldsymbol{h}$
B $\quad \overrightarrow{\mathrm{VT}}=\boldsymbol{f}-\boldsymbol{g}+\boldsymbol{h}$
C $\overrightarrow{\mathrm{VT}}=-\boldsymbol{f}+\boldsymbol{g}-\boldsymbol{h}$
D $\overrightarrow{\mathrm{VT}}=-\boldsymbol{f}-\boldsymbol{g}+\boldsymbol{h}$
13. The diagram shows part of the graph of a quadratic function $y=f(x)$.

The graph has an equation of the form $y=k(x-a)(x-b)$.


What is the equation of the graph?
A $y=3(x-1)(x-4)$
B $y=3(x+1)(x+4)$
C $y=12(x-1)(x-4)$
D $y=12(x+1)(x+4)$
14. Find $\int 4 \sin (2 x+3) d x$.

A $-4 \cos (2 x+3)+c$
B $-2 \cos (2 x+3)+c$
C $\quad 4 \cos (2 x+3)+c$
D $\quad 8 \cos (2 x+3)+c$
15. What is the derivative of $\left(x^{3}+4\right)^{2}$ ?

A $\left(3 x^{2}+4\right)^{2}$
B $\frac{1}{3}\left(x^{3}+4\right)^{3}$
C $6 x^{2}\left(x^{3}+4\right)$
D $2\left(3 x^{2}+4\right)^{-1}$
16. $2 x^{2}+4 x+7$ is expressed in the form $2(x+p)^{2}+q$.

What is the value of $q$ ?
A 5
B 7
C 9
D 11
17. A function $f$ is given by $f(x)=\sqrt{9-x^{2}}$.

What is a suitable domain of $f$ ?
A $x \geq 3$
B $x \leq 3$
C $-3 \leq x \leq 3$
D $-9 \leq x \leq 9$
18. Vectors $\boldsymbol{p}$ and $\boldsymbol{q}$ are such that $|\boldsymbol{p}|=3,|\boldsymbol{q}|=4$ and $\boldsymbol{p} \cdot \boldsymbol{q}=10$.

Find the value of $\boldsymbol{q} \cdot(\boldsymbol{p}+\boldsymbol{q})$.
A 0
B 14
C 26
D 28
19. The diagram shows part of the graph whose equation is of the form $y=2 m^{x}$. What is the value of $m$ ?


A 2
B 3
C 8
D 18
20. The diagram shows part of the graph of $y=\log _{3}(x-4)$.

The point ( $q, 2$ ) lies on the graph.


What is the value of $q$ ?
A 6
B 7
C 8
D 13

## SECTION B

## ALL questions should be attempted.

21. A function $f$ is defined on the set of real numbers by $f(x)=x^{3}-3 x+2$.
(a) Find the coordinates of the stationary points on the curve $y=f(x)$ and determine their nature.
(b) (i) Show that $(x-1)$ is a factor of $x^{3}-3 x+2$.
(ii) Hence or otherwise factorise $x^{3}-3 x+2$ fully.
(c) State the coordinates of the points where the curve with equation $y=f(x)$ meets both the axes and hence sketch the curve.
22. The diagram shows a sketch of the curve with equation $y=x^{3}-6 x^{2}+8 x$.
(a) Find the coordinates of the points on the curve where the gradient of the tangent is -1 .
(b) The line $y=4-x$ is a tangent to this curve at a point A. Find the coordinates of A.

23. Functions $f, g$ and $h$ are defined on suitable domains by $f(x)=x^{2}-x+10, g(x)=5-x$ and $h(x)=\log _{2} x$.
(a) Find expressions for $h(f(x))$ and $h(g(x))$.
(b) Hence solve $h(f(x))-h(g(x))=3$.

## X100/302

NATIONAL<br>QUALIFICATIONS 2008<br>TUESDAY, 20 MAY<br>10.50 AM - 12.00 NOON<br>\section*{MATHEMATICS HIGHER}<br>Paper 2

## Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.


## ALL questions should be attempted.

1. The vertices of triangle ABC are $\mathrm{A}(7,9), \mathrm{B}(-3,-1)$ and $\mathrm{C}(5,-5)$ as shown in the diagram.

The broken line represents the perpendicular bisector of BC.
(a) Show that the equation of the perpendicular bisector of BC is $y=2 x-5$.
(b) Find the equation of the median from C.
(c) Find the coordinates of the point of intersection of the perpendicular bisector of BC and the median from $C$.

2. The diagram shows a cuboid OABC, DEFG.
$F$ is the point $(8,4,6)$.
P divides AE in the ratio 2:1.
Q is the midpoint of CG.
(a) State the coordinates of P and Q .
(b) Write down the components of $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PA}}$.
(c) Find the size of angle QPA.

[Turn over
3. (a) (i) Diagram 1 shows part of the graph of $y=f(x)$, where $f(x)=p \cos x$.

Write down the value of $p$.

Diagram 1

(ii) Diagram 2 shows part of the graph of $y=g(x)$, where $g(x)=q \sin x$.
Write down the value of $q$.

(b) Write $f(x)+g(x)$ in the form $k \cos (x+a)$ where $k>0$ and $0<a<\frac{\pi}{2}$.
(c) Hence find $f^{\prime}(x)+g^{\prime}(x)$ as a single trigonometric expression.
4. (a) Write down the centre and calculate the radius of the circle with equation $x^{2}+y^{2}+8 x+4 y-38=0$.
(b) A second circle has equation $(x-4)^{2}+(y-6)^{2}=26$.

Find the distance between the centres of these two circles and hence show that the circles intersect.
(c) The line with equation $y=4-x$ is a common chord passing through the points of intersection of the two circles.
Find the coordinates of the points of intersection of the two circles.
5. Solve the equation $\cos 2 x^{\circ}+2 \sin x^{\circ}=\sin ^{2} x^{\circ}$ in the interval $0 \leq x<360$.
6. In the diagram, Q lies on the line joining $(0,6)$ and $(3,0)$.
$O P Q R$ is a rectangle, where P and R lie on the axes and $\mathrm{OR}=t$.
(a) Show that $\mathrm{QR}=6-2 t$.
(b) Find the coordinates of Q for which the rectangle has a maximum area.

7. The parabola shown in the diagram has equation

$$
y=32-2 x^{2} .
$$

The shaded area lies between the lines $y=14$ and $y=24$.
Calculate the shaded area.


