

2006 Physics

Advanced Higher

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions – AH Physics 2006

1. **Numerical Marking**

- The fine divisions of marks shown in the marking scheme may be recorded within the body of the script beside the candidate's answer. If such marks are shown they must total to the mark in the inner margin.
- Negative marks or marks to be subtracted should not be shown. An inverted vee (b) may be used instead.
- (c) The number recorded should always be the marks being awarded. The number out of which a mark is scored SHOULD NEVER BE SHOWN AS A DENOMINATOR. (1/2 mark will always mean one half mark and never 1 out of 2.)
- (d) Where square ruled paper is enclosed inside answer books it should be clearly indicated that this item has been considered. Marks awarded should be transferred to the script booklet inner margin and marked G.
- Fractional marks, if awarded to individual questions, should be recorded in the grid, but the total script mark must be rounded up to the next whole number when transferred to the box at the top of the script.

2. Other Marking Symbols which may be used

TICK Correct point as detailed in scheme, includes data entry

Any part of answer which is wrong. (For a block of SCORE THROUGH

wrong answer indicate zero marks.)

A point omitted which has led to a loss of marks. **INVERTED VEE**

Under an answer worth marks which is wrong only **WAVY LINE**

because a wrong answer has been carried forward from

a previous part.

"G" Reference to a graph on separate paper. You MUST

show a mark on the graph paper and the SAME mark

on the script.

"X" Wrong Physics

Wrong order of marks *

3. Marking Symbols which may not be used.

"WP" Marks not awarded because an apparently correct

answer was due to the use of "wrong physics".

"ARITH" Candidate has made an arithmetic mistake.

"SIG FIGS or SF" Candidate has made a mistake in the number of

significant figures for a final answer.

4. General Instructions (Refer to National Qualifications Booklet)

- (a) No marks are allowed for a description of the wrong experiment or one which would not work.
 - Full marks should be given for information conveyed correctly by a sketch.
- (b) Surplus answers: where a number of reasons, examples etc are asked for and a candidate gives more than the required number then wrong answers may be treated as negative and cancel out part of the previous answer.
- (c) Full marks should be given for a correct answer to a numerical problem even if the steps are not shown explicitly. The part marks shown in the scheme are for use in marking partially correct answers.
- (d) Where 1 mark is shown for the final answer to a numerical problem ½ mark may be deducted for an incorrect unit.
- (e) Where a final answer to a numerical problem is given in the form 3^{-6} instead of 3×10^{-6} then deduct $\frac{1}{2}$ mark.
- (f) Deduct ½ mark if an answer is wrong because of an arithmetic slip.
- (g) No marks should be awarded in a part question after the application of a wrong physics principle (wrong formula, wrong substitution) unless specifically allowed for in the marking scheme.
- (h) In certain situations, a wrong answer to a part of a question can be carried forward within that part of the question. This would incur no further penalty provided that it is used correctly. Such situations are indicated by a horizontal dotted line in the marking instructions.
 - Wrong answers can always be carried forward to the next part of a question, over a solid line without penalty.
- (i) ½ mark should be awarded for selecting a formula.
- (j) Where a triangle type "relationship" is written down and then not used or used incorrectly then any partial ½ mark for a formula should not be awarded.
- (k) In numerical calculations, if the correct answer is given then converted wrongly in the last line to another multiple/submultiple of the correct unit then deduct ½ mark.
- (l) Significant figures.

Data in question is given to 3 significant figures.

Correct final answer is 8·16J.

Final answer 8·2J or 8·158J or 8·1576J – No penalty.

Final answer 8J or 8·15761J – Deduct ½ mark.

Candidates should be penalised for a final answer that includes

• three or more figures too many

or

• two or more figures too few. ie accept two higher and one lower

Max ½ mark deduction per question

Max 2½ deduction from question paper

(m) Squaring Error

$$E_K = \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \times 4 \times 2^2 = 4J \text{ (-1/2, ARITH)}$$

$$E_K = \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \times 4 \times 2 = 4J$$
 (½, formula) Incorrect substitution.

The General Marking Instructions booklet should be brought to the markers' meeting.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

	Answers	Mark +comment	Issue
1.	V=IR 7.5=1.5R $R=5.0\Omega$	(½) (½) (1)	Ideal Answer
2.	5·0Ω	(2) Correct Answer	GMI 1
3.	5.0	(1½) Unit missing	GMI 2(a)
4.	4.0Ω	(0) No evidence/Wrong Answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0\Omega$	(1½) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0\Omega$	(½) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(½) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2(a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0\Omega$	(½) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0\Omega$	(½) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0\Omega$	(0) Wrong formula	GMI 5
14.	V=IR $7.5=1.5 \times R$ R= 0.2Ω	(1½) Arithmetic error	GMI 7
15.	V=IR		
	$R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2\Omega$	(½) Formula only	GMI 20

Data Sheet

Common physical Quantities

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Mean of Radius of Moon Orbit Universal constant of gravitation Speed of light in vacuum Speed of sound in air	$egin{array}{c} g \ R_E \ M_E \ M_M \ \end{array}$	9.8 ms ⁻² 6.4 x 10 ⁶ m 6.0 x 10 ²⁴ kg 7.3 x 10 ²² kg 3.84 x 10 ⁸ m 6.67 x 10 ⁻¹¹ m ³ kg ⁻¹ s ⁻² 3.0 x 10 ⁸ ms ⁻¹ 3.4 x 10 ² ms ⁻¹	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particles Planck's constant Permittivity of free space	M_e e m_n m_p m_a	9·11 x 10 ⁻³¹ kg -1·60 x 10 ⁻¹⁹ C 1·675 x 10 ⁻²⁷ kg 1·673 x 10 ⁻²⁷ kg 1·645 x 10 ⁻²⁷ kg 3·20 x 10 ⁻¹⁹ C 6·63 x 10 ⁻³⁴ Js 8·85 x 10 ⁻¹² Hm ⁻¹
			Permeability of free space	μ_0	$4\pi \times 10^{-7} \text{Hm}^{-1}$

Refractive Indices

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 173 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

Spectral Lines

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656 486 434	Red Blue-green Blue-violet	Cadmium	644 509 480	Red Green Blue
	410 397 389	Violet Ultraviolet Ultraviolet	Element	Lasers Wavelength/nm	Colour
Sodium	589	Yellow	Carbon-dioxide Helium-neon	9550 10590 633	Infrared Red

Properties of selected Materials

Substance	Density/	Melting	Boiling	Specific Heat	Specific Latent	Specific
	$Kg m^{-3}$	Point/K	Point/K	Capacity/	Heat of	latent Heat of
				$Jkg^{-1}K^{-1}$	Fusion/Jkg ⁻¹	Vaporisation/
				_		Jkg^{I}
Aluminium	2.701×10^3	933	2623	9.02×10^2	3.95×10^5	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^5	
Glass	2.60×10^3	1400		6.70×10^2		
Ice	9.20×10^{2}	273		2.10×10^3	3.34×10^5	
Gylcerol	1.26×10^3	291	563	2.43×10^3	1.81×10^5	8.30×10^5
Methanol	7.91×10^2	175	338	2.52×10^3	9·9 x 10 ⁴	1.12×10^6
Sea Water	1.02×10^3	264	377	3.93×10^3		
Water	1.00×10^2	273	373	4.19×10^3	3.34×10^5	2.26×10^6
Air	1.29					
Hydrogen	9.0×10^{-2}	14	20	1.43×10^4		4.50×10^5
Nitrogen	1.25	63	77	1.04×10^3		2.00×10^5
Oxygen	1.43	55	90	9.18×10^{2}		2.40×10^5

The gas densities refer to a temperature of 273 K and pressure of 1.01×10^5 Pa.

	2006 AH Physics				
Sample answer and mark allocation			Notes	Margin	
1(a)(i)(A)	$\overline{t} = \underline{\text{sum}}$ $\text{number} \qquad -\mathbf{OR} - \overline{t} = \underline{10.05 + 9.88 + 10.30 + 9.80 + 9.97}$ $\overline{t} = \underline{50.00} = 10.00$	(½) (½)	$\overline{T} = \frac{0.5025 + 0.494 + 0.515 + 0.490 + 0.4985}{5}$ $\overline{T} = \frac{2.500}{5} = 0.500s$ (1) (1) (1) (1) (1)	3 14	
(В	20) uncertainty = $\frac{\text{max} - \text{min}}{N}$ uncertainty = $\frac{10.30 - 9.80}{5}$	(½) (½)	OR %age uncertainty in $T = 1\%$ (1) $= \pm 0.005s$ (½) OR uncertainty = $0.515 - 0.490$ 5 (1) uncertainty in $T = 0.025$		
	uncertainty = $\frac{0.300}{5}$ = 0.100 uncertainty in T = $\frac{0.100}{20}$ = ± 0.005 s	(½) (½)	uncertainty in $T = \pm 0.005s$ (½)		
(a)(ii)	$F = mr\omega^{2}$ $\omega = \frac{2\pi}{T} (\frac{1}{2}) = \frac{2\pi}{0.500} = 4\pi = 12.56$ $F = 0.200 \times 0.500 \times (4\pi)^{2}$	$(\frac{1}{2})$ $(\frac{1}{2})$ $(\frac{1}{2})$	EITHER FORMULA MISSING – MAX (1) $F = \frac{mv^{2}}{r} \qquad (\frac{1}{2})$ $v = \frac{2\pi r}{T} (\frac{1}{2}) = \frac{2\pi \times 0.500}{0.500} = 6.28 (\frac{1}{2})$	2	
	F = 15.8 N	` ,	$F = \frac{0.200 \times (2\pi)^2}{0.500}$ $F = 15.8 \text{ N}$ (½)		
(a) (iii)	% uncertainty in $r = \frac{0.002}{0.500} \times 100 = 0.4\%$ % uncertainty in $m = \frac{0.008}{0.200} \times 100 = 4\%$ % uncertainty in $T = \frac{0.005}{0.500} \times 100 = 1\%$ % uncertainty in $T^2 = 2 \times 1 = 2\%$	(½) (½) (½) (½) (½)	ALLOW CARRY THROUGH WRONG ANSWER FROM 1(a)(i)(B)	4	
	% uncertainty in F = $\sqrt{(4^2 + 2^2)}$ = 4.47% F = (15.8 ± 0.7) N	(½) (½) (½) (1)	Allow $\sqrt{(4^2 + 2^2 + 0.4^2)}$ = 4.49% OR 4.5%		

	2006 AH Physics		
Sampl	e answer and mark allocation	Notes	Margin
(a) (iv	(1/2) Tension (1/2) Weight (B) (1/2) Tension (1/2) Tension (1/2) Weight	Both label and direction necessary for each (½) Accept 'W', 'mg' and 'T' Any mention of centripetal force or tangential force or centrifugal force – Zero marks.	2
(a) (v)	weight = mg = $0.200 \times 9.8 = 1.96$ (N) (1)	(2)	2
	$T_{min} = F_c - W = 15.8 - 1.96 = 13.8 N$ (1/2)	1)	
1 (b)	Pitch decreases -OR- Sound is lower (1)	1

2006 AH Physics				
Sample answer and mark allocation		Margin		
$(\frac{1}{2})$		2	12	
$(\frac{1}{2})$				
(1)				
(1/2)		2		
(1/2)				
(1)				
$(\frac{1}{2})$		2		
$(\frac{1}{2})$				
(1)				
(1/2)		2		
$(\frac{1}{2})$				
(1)				
(1/2)	Accept $I_1\omega_1 = I_2\omega_2$ (½)	2		
$(\frac{1}{2})$				
(1)				
(1)	Correct statement with no justification	2		
$(\frac{1}{2})$	or with justification involving WP – Zero marks.			
$(\frac{1}{2})$	$I \uparrow \omega \downarrow = 1 \frac{1}{2}$			
	(½) (1) (½) (½) (½) (1) (½) (½) (1) (½) (½) (1) (½) (½) (1) (½) (½) (1)	$(\frac{1}{2})$ $(1$		

<u> </u>	2006 AH Physics			1	
Sample	answer and mark allocation		Notes	Margin	
3 (a) (i)	Force exerted on 1 kg (of mass) placed in the field	(1)	$\frac{W}{M} = 0$ Must be in words	1	9
(a) (ii)	(A) $F = \frac{GmM}{r^2}$	(1/2)		3	
	F = mg	$(\frac{1}{2})$			
	$mg = \frac{GmM}{r^2}$	(½)	START HERE = 1½		
	$M = \underbrace{gr^2}_{G}$				
	(B) $M = \frac{3.7 \times (3.4 \times 10^6)^2}{6.67 \times 10^{-11}}$	(1/2)			
	$M = 6.4 \times 10^{23} \text{ kg}$	(1)			
(b) (i)	$F = \frac{GmM}{r^2}$	(1/2)	If value of r incorrect, then maximum mark possible is 1. (½ for equation and ½ for data)	2	
	$r = (3.4 \times 10^6 + 0.3 \times 10^6) = 3.7 \times 10^6$	$(m) (\frac{1}{2})$	$(\frac{1}{2})$ for 6.67×10^{-11}		
	$F = \frac{(\frac{1}{2}) \text{ data}}{6.67 \times 10^{-11} \times 100 \times 6.4 \times 10^{23}}$ $(3.7 \times 10^{6})^{2}$	(1/2)	No formula = Max 1		
	$F = 3.1 \times 10^2 \mathrm{N}$				
(b) (ii)	$F = mr\omega^2$	(1/2)			
	$\omega^2 = \frac{3.1 \times 10^2}{100 \times 3.7 \times 10^6}$	(1/2)	$v = \sqrt{(GM/r)} $ (½)	3	
	$\omega = 9.2 \times 10^{-4} \text{ (rad s}^{-1}\text{)}$	(½)	$v = \sqrt{\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{3.7 \times 10^6}} $ (½)		
	$T = \frac{2\pi}{\omega} (\frac{1}{2}) = \frac{2\pi}{9 \cdot 2 \times 10^{-4}}$		$v = 3.4 \times 10^{3} \text{ (m s}^{-1})$ (½)		
	$T = 6.8 \times 10^3 \mathrm{s}$	(1)	$T = \frac{2\pi r}{v} (\frac{1}{2}) = \frac{2\pi \times 3.7 \times 10^{6}}{3.4 \times 10^{3}}$		
			$T = 6.8 \times 10^3 \mathrm{s} \tag{1}$		
			$\mathbf{OR} \mathbf{T} = 2\pi \ \sqrt{\frac{R^3}{GM}} = \tag{11/2}$		

	2006 AH Physics				
Sample a	nswer and mark allocation		Notes	Ma	rgin
4 (a)	$E_k = \frac{1}{2}m\omega^2 (A^2 - y^2)$	(1/2)	No Equation = 0 marks	2	5
	$E_k = \frac{(\frac{1}{2})}{2} \times 0.25 \times 36 ((5 \times 10^{-2})^2 - y^2)$		$E_{k} = \frac{\frac{1}{2} \times 0.25 \times 36(2.5 \times 10^{-3} - y^{2})}{10^{-3} \times 36(2.5 \times 10^{-3} - y^{2})}$		
	$E_k = 4.5(2.5 \times 10^{-3} - y^2)$				
(b)	$E_{k \text{ MAX}} = 4.5 \times 2.5 \times 10^{-3}$			1	
	$E_{k \text{ MAX}} = 1.1 \times 10^{-2} \text{ J}$	(1)			
(c)	$E_p = \frac{1}{2}m\omega^2 y^2$	(½)	$E_{k} = 4.5(2.5 \times 10^{-3} - (0.04)^{2})$ $= 4.05 \times 10^{-3} (J)$ (½)	2	
	$E_p = \frac{1}{2} \times 0.25 \times 36 \times (0.04)^2$	(1/2)	$E_{p} = E_{k \text{ MAX}} - E_{k} $ $= 1.1 \times 10^{-2} - 4.05 \times 10^{-3}$ $= 7.0 \times 10^{-3} \text{ J} $ (1)		
	$E_p = 7.2 \times 10^{-3} \text{ J}$	(1)	$= 7.0 \times 10^{-3} \text{ J}$ Accept $6.9 \times 10^{-3} \text{ J}$ Accept $7.2 \times 10^{-3} \text{ J}$		

		06 AH Physics					
Sample answer and mark allocation			Notes		Mar	gin	
5.(a)(i)	$4\pi\varepsilon_{\rm o} {\rm r}$	(1/2) $r = 0.18$ (1/2) $\epsilon_0 = 8.85 \times 10^{-12}$ $\frac{Q}{8.85 \times 10^{-12} \times 0.18}$	(½) (½)	No formula max 1 r = 0.36 max 1 no value shown for $\varepsilon_0 = r$ $9 \times 10^9 = (\frac{1}{2})$ data in place		2	10
	$Q = 5.6 \times 10^{-6}$	C					
(a)(ii)	$2.8\times10^5~V$		(1)	Missing V	(½)	1	
(a)(iii)A	$E = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{0}{100}$ $= \frac{5.6}{4\pi \times 8.8}$ $= 1.6 \times 100$	$\frac{5 \times 10^{-6}}{5 \times 10^{-12} \times 0.18^2}$	(½) (½) (1)	Use $r = 0.36$ Wrong Q $E = \frac{V}{r} \text{ W.P.}$	max (½) max (½)	2	
(a)(iii)B	E (1/2)	(2) r		(½) curve. Curve must not touch r as (½) for zero inside sphere No labels/wrong labels de	e	1	
(b)	$r^{2} = 0.72$ $E = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{0}{1}$	r = 0.85	(½) (½)			4	
		$\frac{10^{-6}}{10^{-12} \times 0.85^2}$	(½)				
	$= 6.99 \times 10^4$		(1/2)	6.99×10^4	9×10^4 (1)		
	Vertical comp				yertically		
	$2\times6.99\times10^4$	$\times \cos 45^{\circ}$	$(\frac{1}{2})$	6.99	upwards		
	$=9.9\times10^4\mathrm{N}_{\odot}$	C ⁻¹	(1)	arro	$r \longrightarrow (1/2)$		
	upwards	or vertically up or straight up	(½)	(½) for shape of c	, ,		

	2006 AH Physics				
Samp	le answer and mark allocation		Notes		gin
6.(a)	F = E Q	$(\frac{1}{2})$	Allow –ve sign for charge	2	10
	$= 2.5 \times 10^4 \times 1.6 \times 10^{-12}$	$(\frac{1}{2})$			
	$= 4.0 \times 10^{-8} \mathrm{N}$	(1)			
(b)	W = mg	(1/2)	If $F = \frac{GMm}{r^2}$ then $(\frac{1}{2})$	2	
	$=1.2\times10^{-12}\times9.8$	(1/2)	r^2		
	$=1.2\times10^{-11}$	$(\frac{1}{2})$			
	<< Fe	$(\frac{1}{2})$			
(c)	$a = \frac{F}{m}$	(½)		4	
	$= \frac{4.0 \times 10^{-8}}{1.2 \times 10^{-12}}$	(½)			
	$= (3.3 \times 10^4 \mathrm{ms^{-2}})$				
	$t = \underbrace{\ell}_{V} = \underbrace{7.5 \times 10^{-3}}_{20}$	$(\frac{1}{2}) + (\frac{1}{2})$			
	$=(3.75\times10^{-4}\text{s})$				
	$s = (ut) + \frac{1}{2} at^2$	$(\frac{1}{2})$			
	$= 0.5 \times 3.3 \times 10^{4} \times (3.75 \times 10^{-4})^{2}$	$(\frac{1}{2})$			
	$=2.3\times10^{-3}\mathrm{m}$	(1)			
(d)	$n = \frac{Q}{e}$	(½)		2	
	$= \frac{1.6 \times 10^{-12}}{1.60 \times 10^{-19}}$	(½) (½)data			
	$=1\times10^7$	(1/2)			

2006 AH Physics				
Sample answer and mark allocation		Notes	Mar	gin
2 27	(½) data (½) data (½) × v ² (½)	If no equation then max (1)	2	12
(a) (ii) Bqv (½) = $\frac{\text{mv}^2}{\text{r}}$ (½) => $\text{r} = \frac{\text{mv}(\frac{1}{2})}{\text{Bq}}$ $r = \frac{1.673 \times 10^{-27} \times 6.19 \times 10^{5}}{1.3 \times 1.60 \times 10^{-19}} \times 10^{5} (\frac{1}{2})$ $= 4.98 \times 10^{-3} \text{ m (1)}$		$r = \frac{mv}{Bq}$ Accept $0.005 \mathrm{m}$	3	
(a) (iii) E_k doubled so v increased by $\sqrt{2}$ $v = 6.19 \times 10^5 \times \sqrt{2}$ $= 8.75 \times 10^5 \text{ m s}^{-1}$	(1)	$E_{k \text{ FINAL}} = E_{k \text{ INITIAL}} + qV = (\text{or } 2qV)$ \mathbf{OR} $\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ mu}^2 + qV$ $V = 8.75 \times 10^5 \text{ ms}^{-1}$ (1)	2	
(b) $E_k = \frac{1}{4\pi\epsilon_o} \frac{Q_1 Q_2}{r}$ $1 \cdot 57 \times 10^{-13} = \frac{79 \times 1 \cdot 6 \times 10^{-19} \times 1 \cdot 60 \times 10^{-12}}{4\pi \times 8 \cdot 85 \times 10^{-12} \times r}$ subs	(1) 0 ⁻¹⁹ (½)	(1)	3	
q of gold = $79 \times 1.6 \times 10^{-19}$ $r = 1.2 \times 10^{-13} \text{ m}$	data (½) (1)	Accept 1·1 x 10 ⁻¹³ m (value of constant)		
(c) $m = \underline{m_0} $ $\sqrt{1 - \frac{v^2}{c^2}} $ $4.66 \times 10^{-27} = \underline{1.673 \times 10^{-27}} $ $\sqrt{1 - \frac{v^2}{(3 \times 10^8)^2}} $	(½)		2	
$\sqrt{1 - \frac{v^2}{(3 \times 10^8)^2}}$ $v = 2.8 \times 10^8 \text{m s}^{-1}$	(½) (1)			

2006 AH Physics					
Sample answer and mark allocation		Notes	Margin		
8(a)	Value of resistor R	(1)	Accept 'resistance'	1	6
(b)	$E = -L \frac{dI}{dt}$	(1/2)	If only one – ve sign in second line then only $(\frac{1}{2})$ mark for equation.	2	
	- 9 = - L × 12	(1/2)			
	L = 0.75 H	(1)			
(c)	$E = \frac{1}{2} LI^2$	(1/2)		2	
	$=0.5\times0.75\times(0.1)^2$	(1/2)			
	$=3.8\times10^{-3}\mathrm{J}$	(1)			
(d)	dI very high or			1	
	<u>rapid</u> decay (or collapse) of magnetic field	(1)			

2006 AH Physics				
Sample answer and mark allocation			Mar	gin
9.(a)(i) Strong (force)	(1)		1	6
(a)(ii) A 2u + 1d	(1)	Accept arrow notation.	2	
B 1u + 2d	(1)			
(b) weak (force)	(1)		1	
(c) $\lambda = \frac{h}{mv}$	(1/2)		2	
$= \frac{6.63 \times 10^{-34}}{1.675 \times 10^{-27} \times 3.5 \times 10^{3}}$	(1/2)			
$= 1.13 \times 10^{-10} \text{ m}$	(1)			
		1		1

2006 AH Physics					
Sample answer and mark allocation		Notes	Margin		
10 (a)	Nodes	(1)		1	8
(b) (i)	$v = f\lambda$ $\lambda = 88 \times 10^{-3} \times 2$ $\lambda = 0.176 \text{ (m)}$	$\binom{1/2}{2}$ $\binom{1/2}{2}$ $\binom{1/2}{2}$	Accept 360 m s ⁻¹ (early rounding)	3	
	$v = 2000 \times 0.176$	(1/2)	Accept 300 ms (early founding)		
	$v = 350 \text{ ms}^{-1}$	(1)			
(b) (ii)	Measure distance between > 2 nodes			2	
	or				
	Decrease frequency to increase λ				
	or				
separation	Decrease frequency to increase node separation	(1)			
	This will decrease uncertainty in measure of λ	ement (1)			
(c) Intensity of reflected sound wave now	Intensity of reflected sound wave now re	duced (1)		2	
	Difference between intensity of incident and reflected sound now greater	sound (1)			
	(Hence resultant intensity greater)				

2006 AH Physics				
Sample answer and mark allocation		Notes	Margin	
11(a)(i) $ \begin{array}{c} $	(½)		2	8
similar Δ 's $\frac{\underline{\text{or}}}{\frac{d}{\ell}} = \frac{\frac{\lambda}{2}}{\Delta x}$	(½)			
$d = \frac{\lambda l}{2\Delta x}$	(1/2)			
(a) (ii) $d = \underline{589 \times 10^{-9} \times 0.075}$ $2 \times 3.4 \times 10^{-4}$	(1/2)		1	
$= 6.5 \times 10^{-5} \mathrm{m} (\frac{1}{2})$				
(b) (i) $d = \frac{\lambda}{4n}$	(½)		2	
$= \frac{548 \times 10^{-9}}{4 \times 1.38}$	(½)			
$=9.9\times10^{-8}\mathrm{m}$	(1)			
(b) (ii) $n_{MgF} < n_{Liquid}$	(1/2)		2	
∴ no phase change at this surface	(½)			
: constructive interference	(1/2)			
∴ more light reflected	(1/2)			
(b) (Path length) in oil depends on angle of incidence or thickness	e (½)		1	
: different colours are seen due to interference	(1/2)			

[END OF MARKING INSTRUCTIONS]