

2011 Physics

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2011

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V = IR $7 \cdot 5 = 1 \cdot 5R$ $R = 5 \cdot 0 \Omega$	Mark + Comment ($\frac{1}{2}$) ($\frac{1}{2}$) (1)	Issue Ideal answer
2.	5·0 Ω	(2) Correct answer	GMI 1
3.	5.0	(1 ¹ / ₂) Unit missing	GMI 2 (a)
4.	4·0 Ω	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0 \Omega$	(1 ¹ / ₂) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(¹ / ₂) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(½) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7 \cdot 5}{1 \cdot 5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(¹ / ₂) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7 \cdot 5}{1 \cdot 5} = 5 \cdot 0 \Omega$	(0) Wrong formula	GMI 5
14.	$V = IR 7.5 = 1.5 \times R R = 0.2 \Omega$	$(1\frac{1}{2})$ Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1 \cdot 5}{7 \cdot 5} = 0 \cdot 2 \Omega$	(½) Formula only	GMI 20

2011 Physics Intermediate 2

Marking scheme

Section A

1.	D	11.	D
2.	В	12.	В
3.	Е	13.	В
4.	D	14.	D
5.	Е	15.	Е
6.	В	16.	С
7.	А	17.	С
8.	Е	18.	D
9.	В	19.	А
10.	Α	20.	A

2011 Physics Interme	diate 2			
Sample Answer and I	Mark Allocation		Notes	Marks
21. (a) $s = t = t$	$\frac{vt}{\frac{11}{20}}$ 0.55 s Accept 0.6 s	(½) (½) (1)	Accept $D = ST$ on its own for $\frac{1}{2}$ mark	2
(b) $= \frac{v-t}{t}$	-		$g = 9 \cdot 8 \to 5, 5 \cdot 4, 5 \cdot 39$ $g = 9 \cdot 81 \to 5, 5 \cdot 4, 5 \cdot 40, 5 \cdot 396$	
v = 10 $= 5.5$		(½) (1)		2
(c) (½) v (½ (m/s)		(½) for each axis (-½) if no origin or inappropriate line	Figures on axis must be consistent with parts (a) and (b) above $s \text{ vs } t \rightarrow \text{No marks}$	2

Sample Answer and Mark Allocation			Notes	Marks	
(d) $s = \text{area under graph } (\frac{1}{2})$ OR		(1/2)	*Accept 2, 1.5, 1.51, 1.513		
$s = \frac{1}{2} \times 0.55 \times 5.5 (\frac{1}{2})$	$\mathbf{s} = \left(\frac{5 \cdot 5}{2}\right) \times 0 \cdot 55 (\frac{1}{2})$	(1/2)	*Must be $s = \overline{v}t$. No other symbols		
$s = 1.5 \text{ m} (1)^*$	$s = 1.5 \text{ m} (1)^*$	(1)		2	
				Total 8	

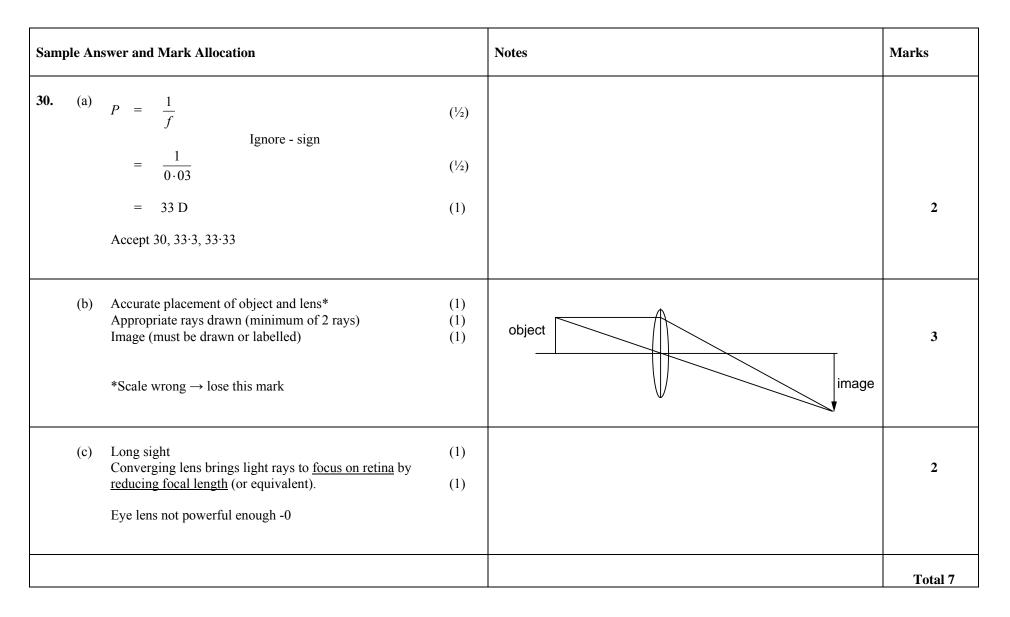
Samp	ple An	swer an	nd Mark Allocation		Notes	Marks
22.	(a)	(a) (i) Acceleration is the change of <u>velocity</u> (<u>not speed</u>) (1) in <u>unit time</u>		(1)	Need to be indication of time requirement. <u>No $(\frac{1}{2})$</u> .	1
		(ii)	Direction of satellite is (continually) changing OR	(1)		
			<u>Velocity</u> of satellite is (continually) changing OR	(1)		
			There is an <u>unbalanced</u> (<u>not 'resultant'</u>) force on the satellite	(1)		1
	(b) $F = 12 - 2 = 10 \text{ N}$ (1			(1)	No attempt to calculate $F \frac{1}{2}/3$ for formula	
		F :	= ma	(1/2)		
		∴10 ÷	=50a	(1/2)		
		a	$= 0.2 \text{ m/s}^2$	(1/2)		
		Direct	tion is right	(1/2)		3
						Total 5

Sample Answer and Mark Allocation		Notes	Marks
23. (a) $W = mg$	(1/2)	*If g = 9.8 accept 490,000 or 500,000 If g = 9.81 accept 491,000 or 500,000	
= 50,000 × 10*	(1/2)	11 g - 9'81 accept 491,000 01 500,000	
= 500,000 N	(1)		2
(b) 500,000 N*	(1)	*Must be consistent with (a) *Don't penalise repeated sig.fig.error	1
(c) For scale drawing accept $(5 \cdot 4 \pm 0 \cdot 3)$ $(36 \pm 3^{\circ})$ $(54 \pm 3^{\circ})$ x $3 \cdot 2 \times 10^{4}$ (c) F		*Accept 5×10^4 , $5 \cdot 4 \times 10^4$, $5 \cdot 44 \times 10^4$, $5 \cdot 441 \times 10^4$ If added 'tail-to-tail' max $1\frac{1}{2}$	
$F^2 = {}^2 + {}^2$	(1/2)		
$F = 5.4 \times 10^4 \text{N*}$	(1)		
$\tan x = \frac{4 \cdot 4 \times 10^4}{3 \cdot 2 \times 10^4}$	(1/2)		
$x = 54^{\circ}$	(1/2)	† Accept 50°, 54°, 54·0°, 53·97°	
$F = 5.4 \times 10^4 \mathrm{N} \text{ at } 036^{(\circ)}$	(1/2)	* must be consistent with x	3

Sample Answer and Mark Allocation		Notes	Marks
(d) $H = DW_{\rm R}$	(1/2)		
$= 15 \times 10^{-6} \times 1$	(1/2)		
$= 1.5 \times 10^{-5} \mathrm{Sv} \qquad (15 \times 10^{-6})$	(1)		2
(e) Ionisation is when an <u>atom</u> gains or loses <u>electrons</u> must have one only needed	(1)	No (½)	1
			Total 9

Sample Answer and Mark Allocation					Notes	Marks
24. (a)		(i)	(33-21) = 12 °C	(1)	*Must be consistent with parts (i) + (ii)	1
		(ii)	(120,000-12,000) = 108,000 J	(1)		1
		(iii)	$E_{\rm h} = cm\Delta T$	(1/2)		
			$108,000 = c \times 2 \cdot 0 \times 12$	(1/2)		
	$c = 4,500 \text{ J/kg} \circ \text{C*} $ (not J/kg/°C)		(1)		2	
	(b)	(i)	Measured value of E_h too large OR ΔT too small Heat lost to <u>surroundings</u> (or similar) * OR water not evenly heated (or similar) †			
					*to air, from water, from equipment etc † or immersion heater not fully immersed Explanation <u>must</u> be offered	2
		(ii)	Insulate beaker OR Put lid on beaker OR Stir water OR Fully immerse heater	(1)	Explanation <u>must</u> be offered	1
	(c)	c) $E = Pt$		(1/2)	*If no conversions answer is 21,600. Also accept 22,000	
		108,00	$000\dagger = P \times 5 \times 60$		† must be consistent with (a) (ii) or wrong physics	
		Р	= 360 W*	(1)		2
						Total 9

Samp	ole Ans	swer and Mark Allocation		Notes	Marks
25.	(a)	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm I}} + \frac{1}{R_{\rm 2}} \tag{(}$	[1/2]		
		$=$ $\frac{1}{4} + \frac{1}{2}$ ((1/2)		
		$\therefore R_{\rm T} = 1.3 \Omega \tag{(}$	(1)		2
		Accept 1 Ω , 1.33 Ω , 1.333 Ω			
	(b)	$R_{\rm T} = R_1 + R_2 \tag{(}$	(1/2)		
		$= 1 \cdot 3 + 6 \tag{(}$	(1/2)		
		= 7.3Ω Consistent with (a) ((1)		2
		Accept 7·3 Ω , 7·33 Ω , 7·333 Ω			
	(c)	(Voltage across 2 Ω resistor = Voltage across 4 Ω resistor)			
		$V = IR \tag{(}$	(1/2)		
		$= 0.1 \times 4 \text{ (or } 0.2 \times 2)$ ((1/2)		
		= 0.4 V (1/2) max, if divide final answer by 2	(1)		2
					Total 6


Samj	ple An	swer an	d Mark Allocation		Notes	Marks
26.	(a)	ac – <u>ele</u>	<u>ctrons</u> * flow around a circuit in one direction only <u>ctrons</u> '* direction changes/reverses after a set time t ' <u>current'</u> Some indication needed eg (repeatedly)	(1) (1)	No (½) marks	2
	(b)	(i) (ii) (iii)	ac OR mains OR one on left Transformers are used to <u>change</u> * the <u>magnitude</u> † (size ok) of an (alternating) voltage OR current Percentage efficiency = $\frac{useful P_o}{P_i} \times 100$ $\therefore useful P_o = \frac{30}{100} \times 50$ = 15 W	 (1) (1) (¹/₂) (¹/₂) (1) 	*Accept 'increase <u>or</u> decrease' OR step up or step down †might be implied eg step up or step down	1 1 2
						Total 6

Sam	ple An	swer and Mark Allocation			Notes	Marks
27.	(a)	To reduce <u>current</u> in LED OR To reduce <u>voltage</u> across LED OR To reduce <u>power</u> to LED		(1)		1
	(b)	$V = 6 - 2 = 4 V$ $V = IR$ $\therefore R = \frac{4}{0 \cdot 1}$		(1) $(\frac{1}{2})$ $(\frac{1}{2})$		
		$= 40 \Omega$		(1)		3
	(c)	$= (0.1)^2 \times 40^* =$ $= 0.4 \text{ W} =$ *Must be consistent with (b) $P =$	$= \frac{V^2}{R}$ = $\frac{16}{40} *$ = 0.4 W = IV = $0.1 \times 4 = 0.4 \text{ W}$	(½) (½) (1)		2
						Total 6

Samj	Sample Answer and Mark Allocation				cation		Notes	Marks
28	(a)	(i) (ii)		=	<i>IV</i> $0.4 \times 10^{-3} \times 0.5$ 2×10^{-4} W $\frac{4 \times 10^{-3}}{2 \times 10^{-4}}$ 20 (cells) * sistent with (a) (i)	(½) (½) (1) (1) (1)	*Must be whole number rounded up -½ if not	2
	(b)		≜) Not 'electricity'	(1)	No (½) marks	1

Sample Answer and Mark Allocation		Notes	Marks
(c) $v = f\lambda$	(1/2)		
$ \dot{\cdot} \lambda = \frac{v}{f} $			
$= \frac{3 \times 10^8}{6 \cdot 7 \times 10^{14}}$	(1/2)		
$= 4.5 \times 10^{-7} \mathrm{m}$	(1)		2
Accept 4×10^{-7} , 4.48×10^{-7} , 4.478×10^{-7}			
			Total 7

Samj	Sample Answer and Mark Allocation				Notes	Marks
29	(a)	(i)	P – Ultraviolet <u>OR</u> UV Q – Microwaves	(1) (1)	<u>Must</u> give P and Q or -1 provided UV written first. One only without P or $Q \rightarrow 0$	2
		(ii)	s = vt	(1/2)		
			$\therefore t = \frac{s}{v}$			
			$= \frac{4 \cdot 50 \times 10^{12}}{3 \times 10^8}$	(½)		
			= 1.5×10^4 s (250 min, 4.2, 4.17, 4.167 h)	(1)		2
		(iii)	Decrease/reduces/goes down/lessens	(1)		1
	(b)	Q	= It	(½)		
		∴ I	$=$ $\frac{Q}{t}$			
			$=$ $\frac{360}{60}$	(½)		
			= 6 A	(1)		2
						Total 7

Sample Answer and Mark Allocation		swer and Mark Allocation	Notes	Marks
31.	(a)	$N = At \tag{1/2}$		
		$= 300 \times 10^{-6} \times 24 \times 60 \times 60 $ (¹ / ₂)		
		= 26 (decays) or (atoms) (1) Accept 25 or 26		2
	(b)	$\begin{array}{rcl} 2400 & \rightarrow & 1200 & \rightarrow & 600 & \rightarrow & 300 \\ & & & (1/2) \text{ for halving} \\ & & (1/2) \text{ for correct number of 'halves'} \end{array}$		
		$3 \times 5,730 = 17,190$ years (1)		2
	(c)	An electron (1)		1
	(d)	A helium <u>nucleus</u> OR equivalent eg $2p + 2n$ (1)		1

Sample Answer and Mark Allocation		Notes	Marks
(e) Greater Stronger -0 More powerful -0	(1)		1
(f) (i) (Aluminium) would stop α particles also	(1)		1
(ii) Any 2 valid answers	(2)	Protective clothing must be justified. (Includes gloves + lead suits etc but not safety glasses) ie safety glasses can count as second mark Shielding (1) Short times (1) Point away from people (1) Increased distance (1) Wash hands (1), etc <u>Only 1 item of clothing valid</u>	2
			Total 10

[END OF MARKING INSTRUCTIONS]