FOR OFFICIAL USE			

C

K&U	PS
Total	Marke

3220/402

NATIONAL QUALIFICATIONS 2006

WEDNESDAY, 17 MAY 10.50 AM - 12.35 PM PHYSICS STANDARD GRADE Credit Level

Fill in these boxes and read what is printed below. Full name of centre	Town
Forename(s)	Surname
Date of birth Day Month Year Scottish candidate number	Number of seat
Reference may be made to the Physics Data Booklet.1 All questions should be answered.2 The questions may be answered in any order but legibly in this book.	
3 Write your answer where indicated by the quest question.	
4 If you change your mind about your answer you space provided at the end of the answer book.	may score it out and rewrite it in the
5 Before leaving the examination room you must given not, you may lose all the marks for this paper.	ve this book to the invigilator. If you do
6 Any necessary data will be found in the data sheet	on page two.
7 Care should be taken to give an appropriate nu answers to questions.	ımber of significant figures in the final

DATA SHEET

Speed of light in materials

Material	Speed in m/s
Air	3.0×10^8
Carbon dioxide	3.0×10^{8}
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	$2 \cdot 1 \times 10^{8}$
Water	$2 \cdot 3 \times 10^8$

Speed of sound in materials

Material	Speed in m/s
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

Gravitational field strengths

	Gravitational field strength on the surface in N/kg
Earth	10
Jupiter	26
Mars	4
Mercury	4
Moon	1.6
Neptune	12
Saturn	11
Sun	270
Venus	9

Specific heat capacity of materials

Material	Specific heat capacity
	$in J/kg ^{\circ}C$
Alcohol	2350
Aluminium	902
Copper	386
Diamond	530
Glass	500
Glycerol	2400
Ice	2100
Lead	128
Water	4180

Specific latent heat of fusion of materials

Material	Specific latent heat of fusion in J/kg
	oj juston in J/kg
Alcohol	0.99×10^{5}
Aluminium	3.95×10^{5}
Carbon dioxide	1.80×10^{5}
Copper	2.05×10^{5}
Glycerol	1.81×10^{5}
Lead	0.25×10^{5}
Water	3.34×10^{5}

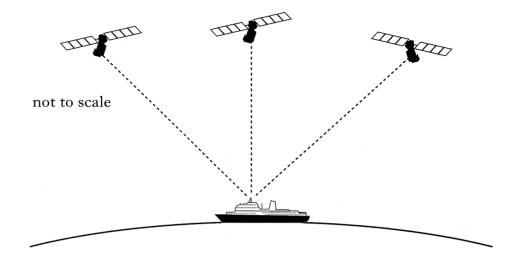
Melting and boiling points of materials

Material	Melting point in °C	Boiling point in °C
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Turpentine	-1 0	156

Specific latent heat of vaporisation of materials

Material	Specific latent heat of vaporisation in J/kg
Alcohol	11.2×10^{5}
Carbon dioxide	3.77×10^5
Glycerol	$8\cdot30\times10^5$
Turpentine	2.90×10^{5}
Water	22.6×10^{5}

SI Prefixes and Multiplication Factors


Prefix	Symbol	Factor
giga	G	$1000000000 = 10^9$
mega	\mathbf{M}	$1000000 = 10^6$
kilo	k	$1000 = 10^3$
milli	m	$0.001 = 10^{-3}$
micro	μ	0.000001 = 10^{-6}
nano	n	$0.0000000001 = 10^{-9}$

[3220/402] Page two

rr compa	ter is connected to the Internet by means of a copp	per wire and a		MAR	_
glass opti	cal fibre as shown.	Ī	Marks	K&U	
Æ	copper				
	wire				
	computer optical fibre				
	optical fibre				
	junction				
(a) In th	e table below, enter:				
(i)	the speed of the signal in each material;				
(ii)	the type of signal in each material.				
	Copper wire Glass option	cal fibre			
Speed	of signal		•		100
Turk	£ -:1		2	Į.	
1 ype o	of signal		2	Section 1	L
fibre ——optical					
fibre junction	optical fibre		2		
fibre junction		ommunication	2		
fibre junction (c) Copp	per wire or glass optical fibre can be used in teleco	ommunication	2		
fibre junction	per wire or glass optical fibre can be used in teleco		2		
fibre junction (c) Copposite system	per wire or glass optical fibre can be used in telecoms. Explain which material, copper or glass, would need	d less repeater	2		
fibre junction (c) Copposite system	per wire or glass optical fibre can be used in telecoms. Explain which material, copper or glass, would need amplifiers over a long distance.	d less repeater	2		
fibre junction (c) Copposite system	per wire or glass optical fibre can be used in telecoms. Explain which material, copper or glass, would need amplifiers over a long distance.	d less repeater			
fibre junction (c) Copp syste (i)	Der wire or glass optical fibre can be used in telecoms. Explain which material, copper or glass, would need amplifiers over a long distance. A broadband communication system carries 1	d less repeater			
fibre junction (c) Copp syste (i)	Der wire or glass optical fibre can be used in telecoms. Explain which material, copper or glass, would need amplifiers over a long distance. A broadband communication system carries 1 channels and 200 phone channels. Explain which material, copper or glass, should be	d less repeater			

Marks	K&U	P
111.001100		

2. A ship has a satellite navigation system. A receiver on the ship picks up signals from three global positioning satellites.

These satellites can transmit radio signals at three different frequencies, 1176 MHz, 1228 MHz and 1575 MHz. The satellites orbit at a height of 20 200 km above the Earth's surface.

(a) (i) State the speed of the radio signals.

.....

(ii) One of the satellites is directly above the ship.

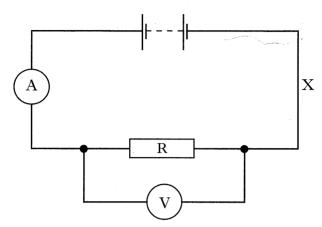
Calculate the time taken for the signal from this satellite to reach the ship.

Space for working and answer

(iii) Calculate the wavelength of the 1228 MHz signal.

Space for working and answer

2


2

(continu	ıed) () de la	Marks	K&U	PS
(b) Stat	e which of the three signals has the shortest wavelength.	1		
(c) One	of the global positioning satellites is shown below.	1		
	curved reflector transmitter		,	
(i)	Complete the diagram below to show the effect of the curved reflector on the transmitted signals.			
(ii)	A satellite in orbit a few hundred kilometres above Earth has a period of one hour. A geostationary satellite orbits 36 000 km above Earth. Suggest the period of the global positioning satellite.		3,	

[3220/402]

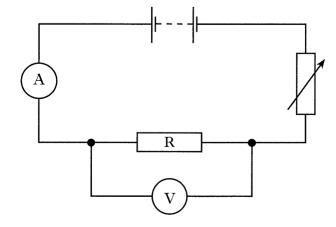
Marks K&U PS

- 3. Two students are investigating voltage, current and resistance.
 - (a) The first student builds the circuit shown.

The ammeter displays a current of $0.10\,\mathrm{A}$ and the voltmeter displays a voltage of $3.0\,\mathrm{V}$.

(i) Calculate the resistance of R when the current is $0.10 \,\mathrm{A}$.

Space for working and answer

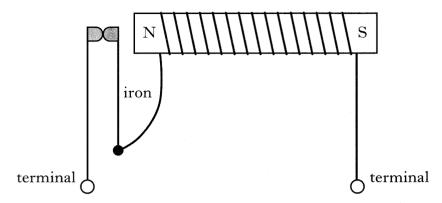

2

(ii) The student inserts another ammeter at position X. What is the reading on this ammeter?

.... 1

11/3

(b) The second student uses the **same** resistor in the circuit below.

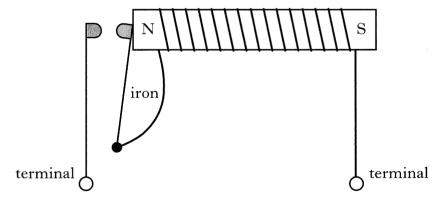


(continued)				
This student obt	ains the following set of	results		
Result number	Voltage across R (V)	Current through R (A)		
1	6.0	0.20	-	
2	7.5	0.25		
3	9.0	0.30		
4	10.0	0.35		
5	12.0	0.40		
obtained 				
			2	10 J
(ii) Explain	which result should be	retaken.		
	.,		2	
		out resistance does to the first student's ex		
			1	
		г	Turn over	
		ι		
		l		

Marks	K&U	PS

4. A circuit breaker as shown below is used in a circuit.

fixed moveable contact contact

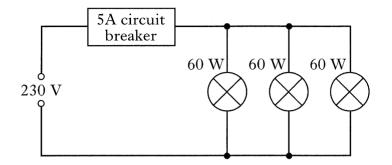


(a) (i) State **one** advantage of a circuit breaker compared to a fuse.

(ii) The circuit breaker breaks the circuit when the current becomes too high.

fixed moveable contact contact

Explain how the circuit breaker operates when the current becomes too high.


•••••	

Marks K&U

K&U PS

4. (continued)

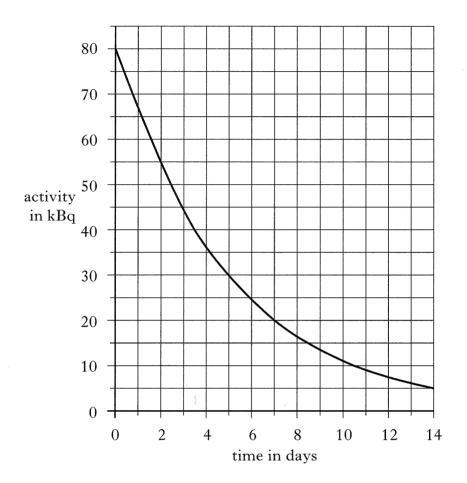
(b) A 5 ampere circuit breaker is used in a household lighting circuit which has three 60 W lamps as shown below.

(i) Show that the resistance of **one** lamp is 882Ω .

Space for working and answer	

(ii) Calculate the combined resistance of the three lamps in this circuit.

(iii) Show by calculation whether the circuit breaker will switch off the lamps when all three are lit.


Space for working and answer	

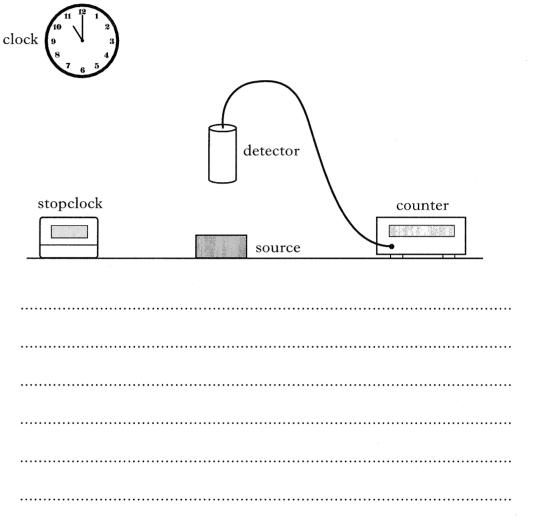
3

2

Marks | K&U | PS

5. A radioactive source is used for medical treatment. The graph shows the activity of this source over a period of time.

(a) Use information from the graph to calculate the half-life of this source.


Space for working and answer

THIS MARGIN

Marks K&U

5. (continued)

(b) Describe a method that could be used to measure the half-life of this radioactive source, using the apparatus shown. You can ignore background radiation.

(c) A sample of this source is to be given to a patient at 9.30 am on May 17. When the sample is prepared, its initial activity is 200 kBq. The activity of the sample when given to the patient must be 12.5 kBq.

Calculate at what time and on what date the sample should be prepared.

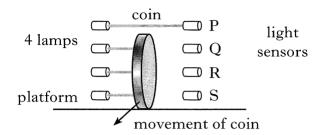
Space for wor	king and answ	er	
			ı

Marks K&U

The table below gives information about some types of laser.

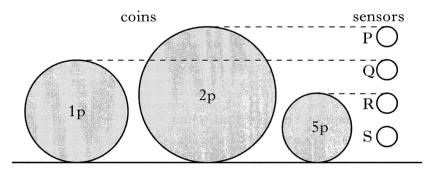
Type of laser	Wavelength (nm)	Output power (W)
Krypton fluoride	248	1.0
Argon	488	2.0
Helium neon	633	0.005
Rhodamine	570 to 650	50.0
Carbon dioxide	10 600	200.0

- 1				1		i I	
	Krypton fluoride	248	1.0				
	Argon	488	2.0				
	Helium neon	633	0.005				
	Rhodamine	570 to 650	50.0				
	Carbon dioxide	10 600	200.0				
(700 nm. (i) Name one radiation. (ii) Name one radiation. (iii) Give one to the second of the seco	e type of laser from the light enges?	the table that emits the table that emits the table that emits ultra the table that emits ultra et radiation. The table that emits ultra et radiation. The table that emits ultra et radiation.	visible caviolet as. as the	1 1		
(c) The beam from of steel is cut in		i is used to cut steel. It	section			
	-	on from the table, calcust cutting process.	late the energy given out	by the			
	Space for work	ing and answer			2		
						1	


7. A student designs a lie detector using the following circuit.

			Marks	K&U	PS
	T	moisture detector P output device Moisture detector: high resistance when dry low resistance when wet			
(a)	Nam	ne component Q.			0.00 0.00 V
(<i>b</i>)		gest a suitable output device that could be used at P to produce an ble output.	1		
(c)	mois	lie detector is based on the fact that when a person tells a lie, the ture on their skin increases. Initially, the person holds the ture detector in dry hands and component R is adjusted until the ut device is silent. What happens to the resistance of the moisture detector when the person holding it tells a lie?	1		
			1		
	(ii)	Explain how the circuit operates as a lie detector.	2		
		[Turn over	-		

Marks K&U


&U PS

8. An automatic vending machine accepts 1p, 2p and 5p coins. Four light sensors P, Q, R and S are arranged as shown in the coin slot.

When a coin passes between a lamp and its sensor, the light is blocked. Coins of different diameters block the light from different lamps.

The position of the sensors in relation to the diameters of coins is shown below.

The logic output of the sensors is as follows:

light blocked — logic output 1 light not blocked — logic output 0

(a) (i) Name a suitable input device to be used as a sensor.

.....

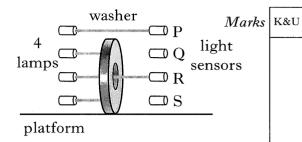
(ii) Complete the truth table for the outputs of the sensors when each of the coins passes between the lamps and the sensors.

	1p coin	2p coin	5p coin
Sensor P			
Sensor Q			
Sensor R			
Sensor S			

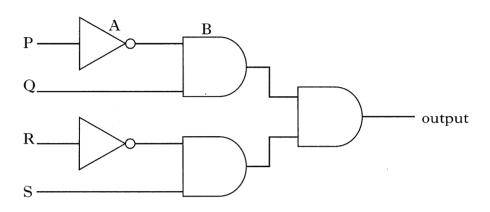
7

1

2


1

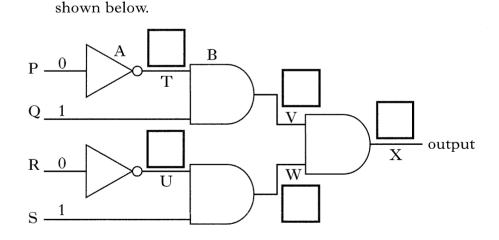
[Turn over


PS

8. (continued)

(b) A washer is a metal disc with a hole in the middle. The machine is able to reject washers, when they are inserted instead of coins. A washer the same diameter as a 1p coin blocks the light from reaching sensors Q and S only.

Part of the circuit used is shown below.


(i) Name gate A.

(ii) Name gate B.

[3220/402]

(iii) When a washer is inserted, the logic levels at P, Q, R and S are as

In the boxes on the diagram above, enter the logic levels at each position T, U, V, W and X.

(iv) When a washer is detected, this circuit activates an output device that pushes the washer to reject it.

Name a suitable device to be used as the output device.

Page fifteen

PS

MARGIN

Marks K&U

A table from the Highway Code giving overall stopping distances for vehicles is shown.

The overall stopping distance is made up of:

the thinking distance - the distance travelled while the driver "thinks" about braking. This distance depends on the driver's reaction time.

plus

the **braking distance** – the distance travelled while braking.

Speed of vehicle (m/s)	Overall stopping distance (m)
8.9	
13.4	9 14
17.8	12 24
26.7	18 55
thinking distance	braking distance

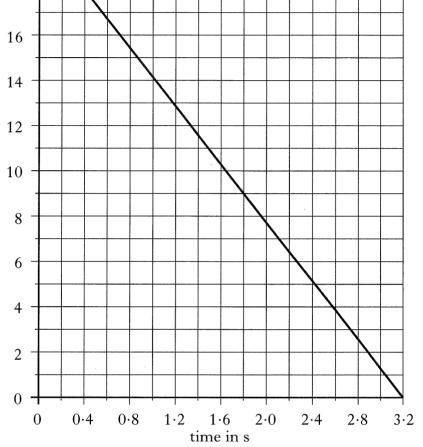
(*a*) (i) How far does a vehicle travelling at 13.4 m/s travel while the driver thinks about braking?

(ii) Use information from the table to calculate the reaction time.

Space for working and answer

2

9. (continued)


DO NOT THIS MARGIN

(b) A car travels along a road. The driver sees traffic lights ahead change Marks K&Ufrom green and starts to brake as soon as possible. A graph of the car's motion, from the moment the driver sees the traffic lights change, is shown.

PS

speed in m/s

18

What is **this** driver's reaction time?

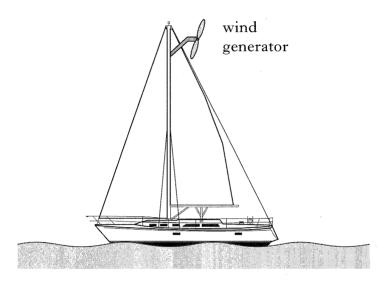
(ii) Calculate the overall stopping distance.

Space for working and answer

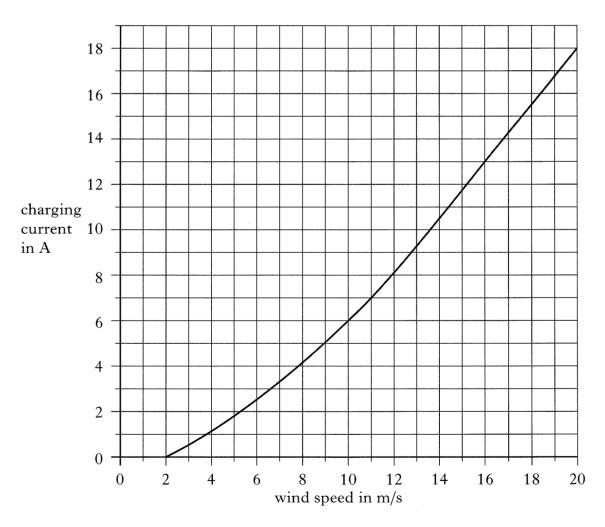
(iii) Calculate the acceleration of the car from the time the driver applies the brakes.

Space for working and answer

1


					MAR	.GIN
10.	hor	izont	ent runs along a diving platform and leaves the platform ally with a speed of 2.0 m/s. The student lands in the water 0.3 s	Marks	K&U	PS
	late	r. Ai	r resistance is negligible.			
			$ \stackrel{\bullet}{\blacktriangleright} \longrightarrow$			
			2·0 m/s			
	(a)	(i)	Calculate the horizontal distance travelled by the student before landing in the water.			
			Space for working and answer			
				2		
		(ii)	The student has a vertical acceleration of 10 m/s ² .			
			Calculate the vertical speed as the student enters the water.			
			Space for working and answer			
				2		
	(b)		er the student runs off the end of the same platform with a zontal speed of 3.0 m/s.			
			v long does the student take to reach the water this time? Explain			
			answer.			
		•••••				
		•••••				
				2		

Marks | K&U 10. (continued) (c) The student climbs from the water level to a higher platform. This platform is 5.0 m above the water. The student has a mass of 50 kg. $5.0 \,\mathrm{m}$ Calculate the gain in gravitational potential energy of the student. Space for working and answer 2 (ii) The student drops from the edge of the platform and lands in the water. Calculate the vertical speed as the student enters the water. Space for working and answer [Turn over


Marks | K&U

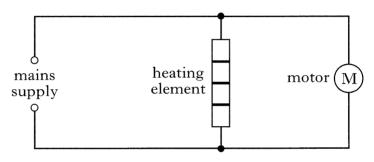
U PS

11. A wind generator on a yacht is used to charge a battery at 12 V.

The graph shows the charging current at different wind speeds.

- (a) The wind blows at a speed of 10 m/s.
 - (i) What is the charging current at this wind speed?

.....


(w)	(con	atinued)	Marks	K&U	+
()	(ii)				
		Space for working and answer			
			2		
	(···)		2		
	(iii)	The wind speed does not change. Calculate the energy supplied to the battery in 3.5 hours.			
		Space for working and answer			
			2		
(b)	batte Why	yacht has a stand-by petrol powered generator to charge the ery. is the petrol generator necessary, in addition to the wind rator?			
(b)	batte Why	ery. is the petrol generator necessary, in addition to the wind			Control of the Contro
(b)	batte Why	ery. is the petrol generator necessary, in addition to the wind			
<i>(b)</i>	batte Why	ery. is the petrol generator necessary, in addition to the wind			
<i>(b)</i>	batte Why	ery. is the petrol generator necessary, in addition to the wind			
<i>(b)</i>	batte Why	ery. is the petrol generator necessary, in addition to the wind rator?			
(b)	batte Why	ery. is the petrol generator necessary, in addition to the wind rator?			
<i>(b)</i>	batte Why	ery. is the petrol generator necessary, in addition to the wind rator?			
<i>(b)</i>	batte Why	ery. is the petrol generator necessary, in addition to the wind rator?			

Marks | K&U PS

12. A mains operated air heater contains a fan, driven by a motor, and a heating element. Cold air is drawn into the heater by the fan. The air is heated as it passes the heating element.

The circuit diagram for the air heater is shown.

What is the voltage across the heating element when the heater is (a) operating?

What type of circuit is used for the air heater?

1

(b) The following data relates to the heater when the fan rotates at a particular speed.

> mass of air passing through per second $0.2 \,\mathrm{kg}$ energy supplied to air per second 2000 J 1000 J/kg °C specific heat capacity of air

(i) Calculate the increase in air temperature.

Space for working and answer

2


				MAR	GIN
			Marks	K&U	PS
2. <i>(b)</i>	(con	atinued)			
	(ii)	The motor is adjusted to rotate the fan at a higher speed. This draws a greater mass of air per second through the heater. Explain any difference this causes to the temperature of the hot air.			
			2		
					1
		[Turn over			1
		[Turn over			i

DO NOT WRITE IN THIS MARGIN

_					1
(a)	(i)	1·35 N/kg. What is a moon?			
<i>(a)</i>	(1)	What is a moon.			
			1		Ŧ
	(ii)	What is meant by gravitational field strength?			
			1		
(b)		y in 2005, a probe was released from a spacecraft orbiting Titan. probe, of mass 318 kg, travelled through the atmosphere of Titan.			
	(i)	Calculate the weight of the probe on Titan.			
		Space for working and answer			
		Space for working and answer			
				i	
					3000
			2		200
					200
	(ii)	As the probe descended through the atmosphere, a parachute attached to it opened.			
	(ii)	As the probe descended through the atmosphere, a parachute attached to it opened. State why the parachute was used.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			
	(ii)	attached to it opened.			

12	(b)	loon	atinuad)	Marks	K&U	PS	
13.	(<i>0)</i>	(iii)	The probe carried equipment to analyse the spectral lines of radiation from gases in the atmosphere of Titan. These lines are shown. The spectral lines of a number of elements are also shown.				
			Spectral lines from gases in Titan's atmosphere				
			Helium				
			Hydrogen				
			Mercury				
			Nitrogen				
			Use the spectral lines of the elements to identify which elements are present in the atmosphere of Titan.				
				2			
			$[END\ OF\ QUESTION\ PAPER]$				

MARGIN K&U PS YOU MAY USE THE SPACE ON THIS PAGE TO REWRITE ANY ANSWER YOU HAVE DECIDED TO CHANGE IN THE MAIN PART OF THE ANSWER BOOKLET. TAKE CARE TO WRITE IN CAREFULLY THE APPROPRIATE QUESTION NUMBER.

[BLANK PAGE]