FOR OFFICIAL USE				

K & U	PS	
Total Marks		

3220/402

NATIONAL QUALIFICATIONS 2007 WEDNESDAY, 16 MAY 10.50 AM - 12.35 PM PHYSICS STANDARD GRADE Credit Level

Fill in these boxes and read what is printed below.				
Full name of centre	Town			
Forename(s)	Surname			
Date of birth Day Month Year Scottish candidate number	Number of seat			
Reference may be made to the Physics Data Booklet.				
 All questions should be answered. The questions may be answered in any order but all answers must be written clearly and legibly in this book. 				
3 Write your answer where indicated by the question or in the space provided after the question.				
4 If you change your mind about your answer you may score it out and rewrite it in the space provided at the end of the answer book.				
5 Before leaving the examination room you must give this book to the invigilator. If you do not, you may lose all the marks for this paper.				
6 Any necessary data will be found in the data sheet on page two.				
7 Care should be taken to give an appropriate number of significant figures in the final answers to questions.				

Speed of light in materials

Material	Speed in m/s
Air	3.0×10^8
Carbon dioxide	3.0×10^8
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	$2 \cdot 1 \times 10^{8}$
Water	$2 \cdot 3 \times 10^8$

Speed of sound in materials

Material	Speed in m/s
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

Gravitational field strengths

	Gravitational field strength on the surface in N/kg
Earth	10
Jupiter	26
Mars	4
Mercury	4
Moon	1.6
Neptune	12
Saturn	11
Sun	270
Venus	9

$Specific \ latent \ heat \ of \ fusion \ of \ materials$

Material	Specific latent heat of fusion in J/kg
Alcohol	0.99×10^{5}
Aluminium	3.95×10^{5}
Carbon dioxide	1.80×10^5
Copper	2.05×10^{5}
Glycerol	1.81×10^5
Lead	0.25×10^{5}
Water	3.34×10^5

Specific latent heat of vaporisation of materials

Material	Specific latent heat
	of vaporisation in J/kg
Alcohol	11.2×10^{5}
Carbon dioxide	3.77×10^5
Glycerol	$8 \cdot 30 \times 10^5$
Turpentine	2.90×10^{5}
Water	22.6×10^5

Specific heat capacity of materials

Material	Specific heat capacity
	$in J/kg \ ^{\circ}C$
Alcohol	2350
Aluminium	902
Copper	386
Diamond	530
Glass	500
Glycerol	2400
Ice	2100
Lead	128
Water	4180

Melting and boiling points of materials

Material	Melting point in °C	Boiling point in °C
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Turpentine	-10	156

SI Prefixes	and Multiplication	Factors
-------------	--------------------	---------

Prefix	Symbol	Factor
giga	G	$1000000000 = 10^9$
mega	\mathbf{M}	$1000000 = 10^6$
kilo	k	$1000 = 10^3$
milli	m	$0.001 = 10^{-3}$
micro	μ	0.000001 = 10^{-6}
nano	n	$0.000000001 = 10^{-9}$

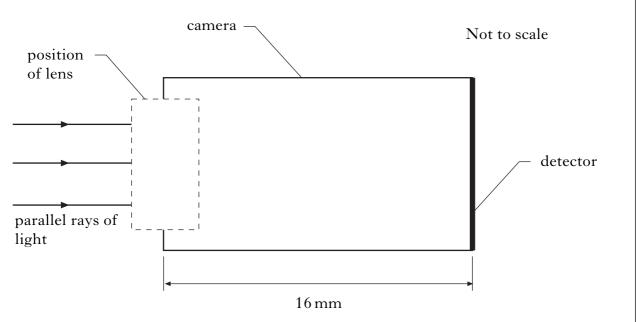
			WRIT TH MAR	IIS
	upil is sent exam results by a text message on a mobile phone. The Juency of the signal received by the phone is 1900 MHz.	Marks	K&U	PS
- 1				
The	e mobile phone receives radio waves (signals).			
(<i>a</i>)	What is the speed of radio waves?			
(h)	Calculate the wavelength of the signal	1		
(<i>b</i>)	Calculate the wavelength of the signal.			
	Space for working and answer			
		2		
	The pupil sends a video message from the mobile phone. The message is transmitted by microwaves. The message travels a total distance of 72000 km.			
	Calculate the time between the message being transmitted and received.			
	Space for working and answer			
		2		
		4		

Marks K&U \mathbf{PS} 2. Radio waves have a wide range of frequencies. The table gives information about different wavebands. Waveband Frequency Range Example Low frequency $30 \,\mathrm{kHz} - 300 \,\mathrm{kHz}$ Radio 4 (LF)Medium frequency $300 \,\mathrm{kHz} - 3 \,\mathrm{MHz}$ Radio Scotland (MF)High frequency 3 MHz - 30 MHzAmateur radio (HF) Very high frequency $30 \mathrm{MHz} - 300 \mathrm{MHz}$ Radio 1 FM (VHF) Ultra high frequency 300 MHz - 3 GHz BBC 1 and ITV (UHF) Super high frequency $3 \,\mathrm{GHz} - 30 \,\mathrm{GHz}$ Satellite TV (SHF) (a) Coastguards use signals of frequency 500 kHz. What waveband do these signals belong to? 1

[Turn over

DO NOT WRITE IN THIS MARGIN

 \mathbf{PS}


Marks K&U

3. A door entry system in an office block allows video and audio information to be sent between two people.

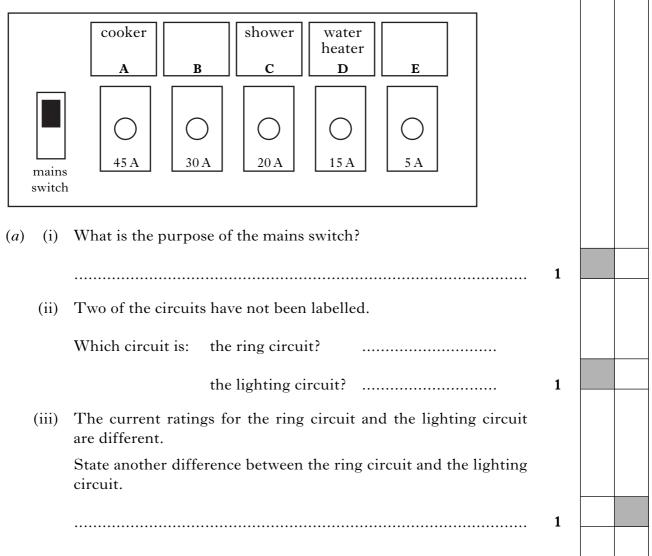
(*a*) A camera at the entrance uses a lens to focus parallel rays of light onto a detector.

Part of the camera is shown in the diagram below.

- (i) Complete the diagram above by:
 - (A) drawing the lens used;
 - (B) completing the path of the light rays.
- (ii) Using information from the diagram, calculate the power of the lens used in the camera.

Space for working and answer

2

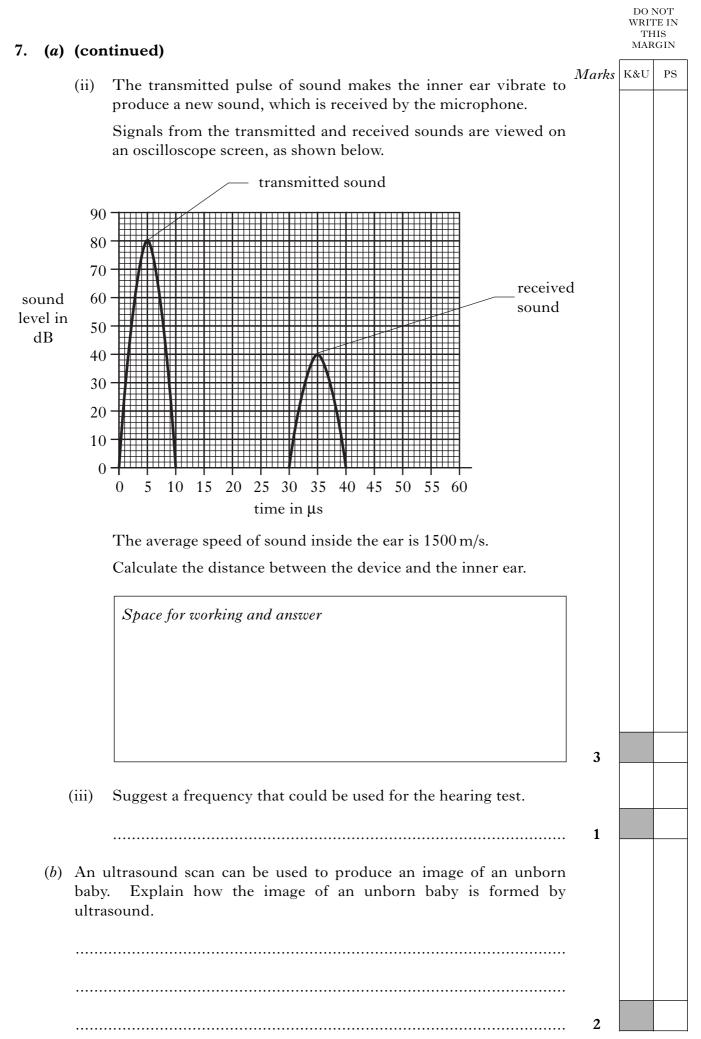

				DO N WRIT TH MAR	TE IN IIS
_			Marks	K&U	\mathbf{PS}
3.	(co	ntinued)			
	(<i>b</i>)	The door entry system uses a black and white television screen.			
		Describe how a moving picture is seen on the television screen.			
		Your description must include the terms:			
		line build up image retention brightness variation.			
			3		

[Turn over

 \mathbf{PS}

Marks K&U

4. The consumer unit in a house contains a mains switch and circuit breakers for different circuits.


					DO I WRIT TH MAR	TE IN IIS
4.	(co	ntinu	red)	Marks	K&U	PS
	(b)	(i)	A 25 W lamp is designed to be used with mains voltage. Calculate the resistance of the lamp.			
			Space for working and answer			
				3		
		(ii)	Four of these lamps are connected in parallel. Calculate the total resistance of the lamps.			
			Space for working and answer			
				2		
			[Turn over			

								TH MAR	GI
T		C	.	• .• .1 1	1		Marks	K&U	Р
Τw	vo gro	ups of pup	oils are invest	igating the elec	ctrical prop	erties of a lamp.			
(<i>a</i>)				ing equipment		. 1 1			
				V d.c. supply;		ipment is used to			
		-		h, and the volt	-	-	,		
			0	12V d.c. 0					
							3		
(b)	equi l	pment: lamp; ohr	nmeter; conne			en the following eter?	Ş		
(c)	The belo		f both group			rded in the table			
(c)			f both group V(V)						
(c)		w.		s are combine	d and reco	rded in the table			
(c)		w. I(A) 2 Use these	V(V) 12	s are combine R(Ω) 6	d and reco IV	rded in the table			
(c)	belo	w. I(A) 2 Use these	V(V) 12 e results to co	s are combine R(Ω) 6	d and reco IV	rded in the table			
(c)	belo	w. I(A) 2 Use these Space for	V(V) 12 e results to co	s are combine R(Ω) 6 omplete the las	d and reco IV t two colum	rded in the table	2		
(c)	(i)	w. I(A) 2 Use these Space for What qu	V(V) 12 e results to co	s are combine R(Ω) 6 omplete the las	d and reco IV t two colum	rded in the table I^2R and the table.	2		
(c)	(i)	w. I(A) 2 Use these Space for What quitable?	V(V) 12 e results to co	s are combine $R(\Omega)$ 6 omplete the las presented by t	d and reco IV t two colum	rded in the table I^2R and the table.	2		

DO NOT WRITE IN THIS MARGIN

						GIN
				Marks	K&U	\mathbf{PS}
•			oid gland, located in the neck, is essential for maintaining good			
	heal	un.	Thyroid gland			
	(<i>a</i>)	(i)	A radioactive source, which is a gamma radiation emitter, is used as a radioactive tracer for the diagnosis of thyroid gland disorders.			
			A small quantity of this tracer, with an activity of 20 MBq , is injected into a patient's body. After 52 hours, the activity of the tracer is measured at 1.25 MBq .			
			Calculate the half life of the tracer.			
			Space for working and answer			
				2		
		(ii)	Another radioactive source is used to treat cancer of the thyroid gland. This source emits only beta radiation.	2		
			Why is this source unsuitable as a tracer ?			
				1		
		(iii)	The equivalent dose is much higher for the beta emitter than for the gamma emitter.			
			Why is this higher dose necessary?			
				1		
	(<i>b</i>)	Wha	t are the units of equivalent dose?			
				1		
					1 I	

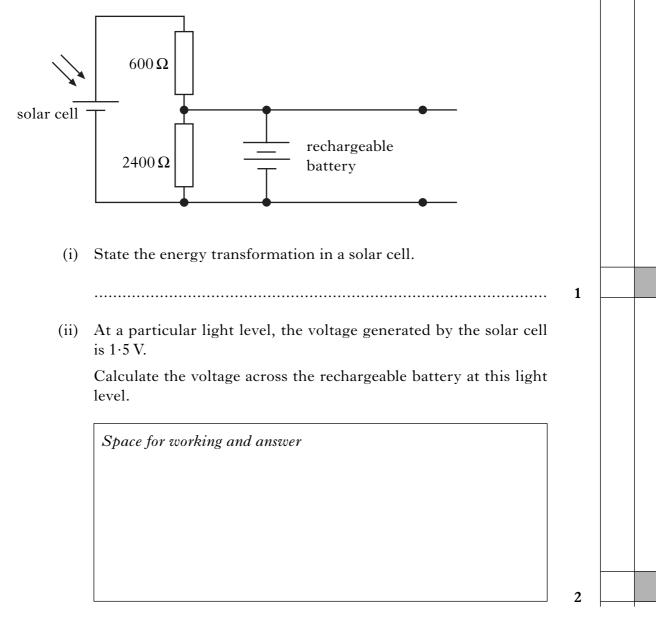
			DO I WRIT TH MAR	TE IN IIS
7.	A newborn baby is given a hearing test. A small device, containing a loudspeaker and a microphone, is placed in the baby's ear.	Marks	K&U	PS
	 (a) A pulse of audible sound lasting 10µs is transmitted through the loudspeaker. The sound is played at a level of 80 dB. 			
	(i) Give a reason why this pulse of sound does not cause damage to the baby's hearing.			
		1		

Page thirteen

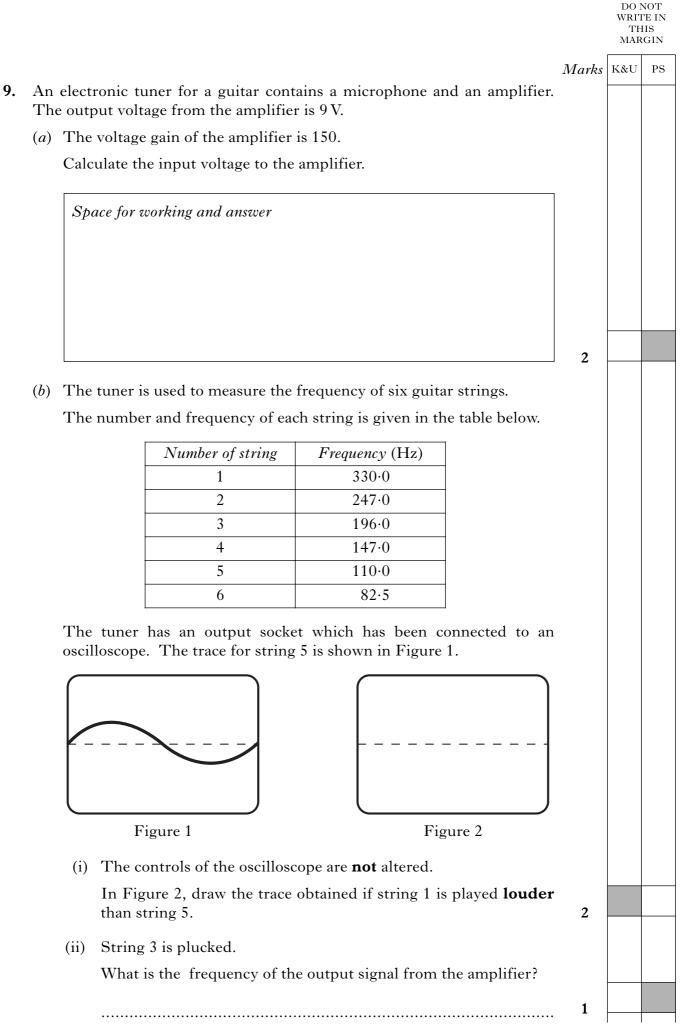
[Turn over

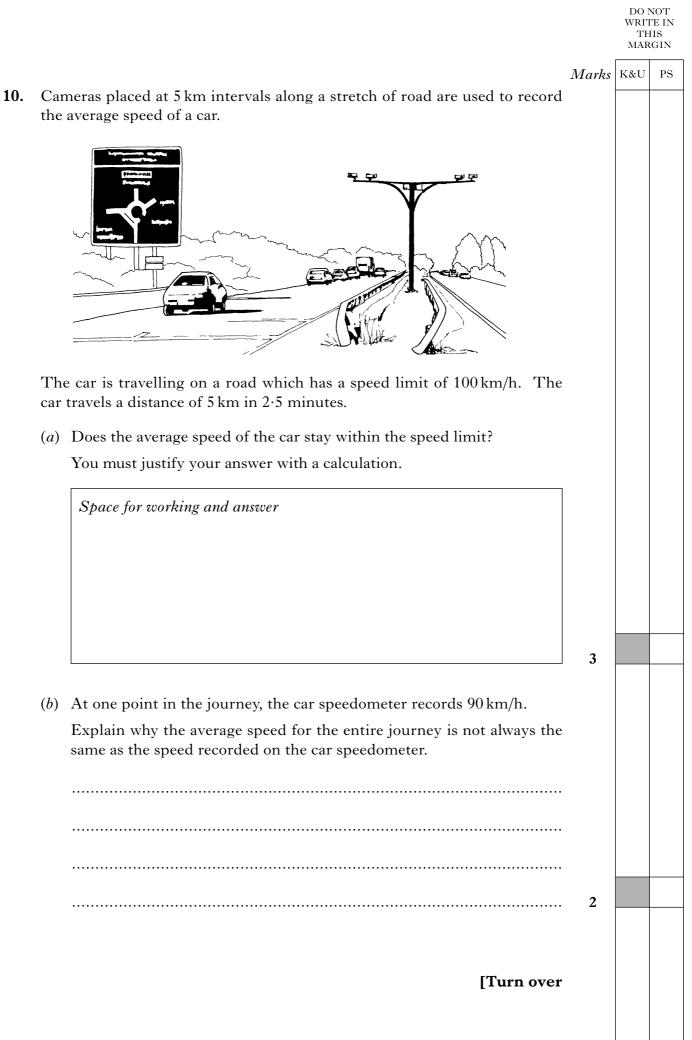
DO NOT WRITE IN THIS MARGIN

 \mathbf{PS}


Marks K&U

8. A high intensity LED is used as a garden light. The light turns on automatically when it becomes dark.

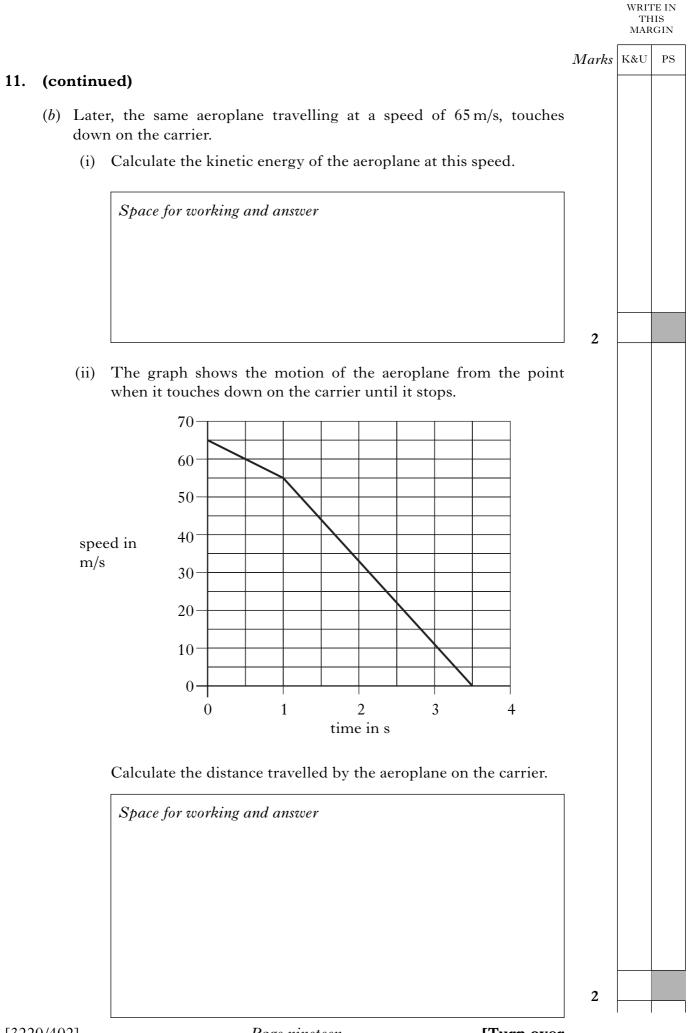


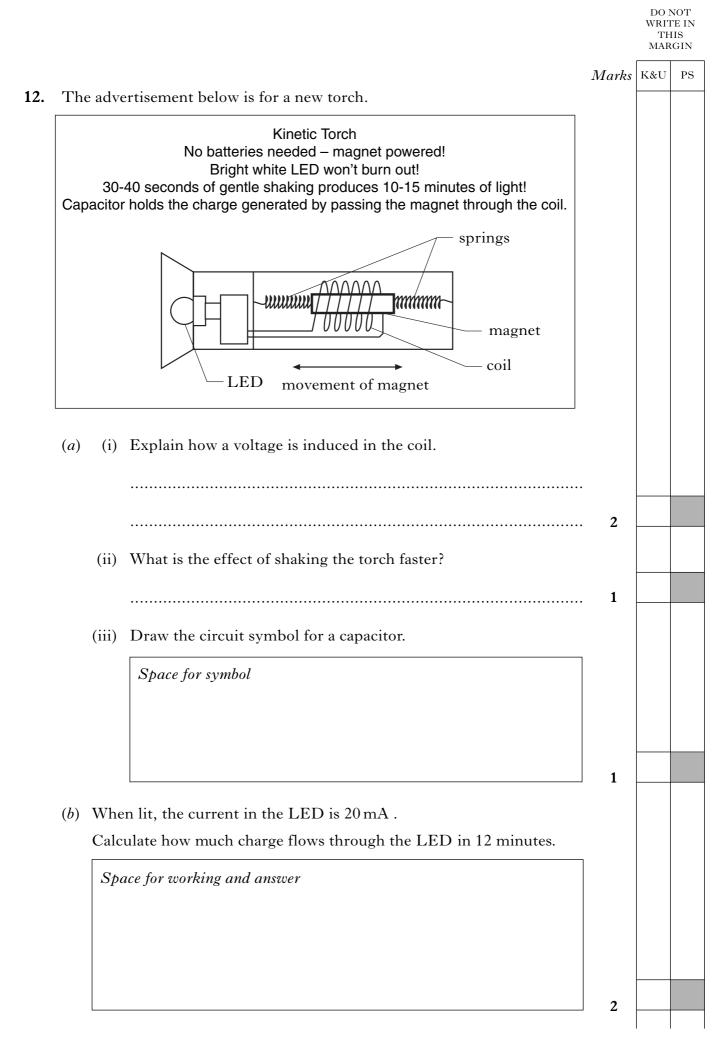

The light also contains a solar cell which charges a rechargeable battery during daylight hours.

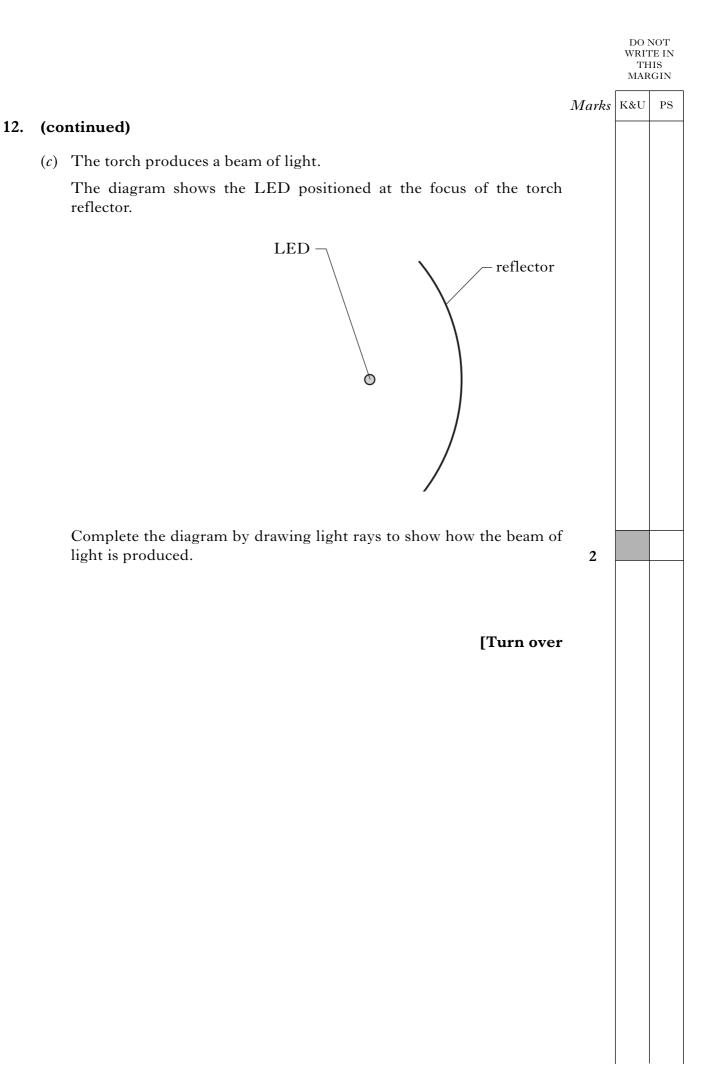
(a) Part of the circuit is shown below.

WRITE IN THIS MARGIN 8. (continued) Marks K&U \mathbf{PS} (b) The LED is switched on using the following circuit. R rechargeable battery Х (i) Name component X. 1 The graph below shows the voltage across the LDR in this circuit for different light levels. Light level is measured in lux. 100 80 light level 60 in lux 40 20 0 0 0.10.20.30.40.50.60.70.80.91.0voltage across LDR in volts (ii) For the LED to be lit, the voltage across the LDR must be at least 0.7 V. What is the maximum light level for the LED to be lit? 1 (iii) Explain the purpose of resistor R. 1

 \mathbf{PS}

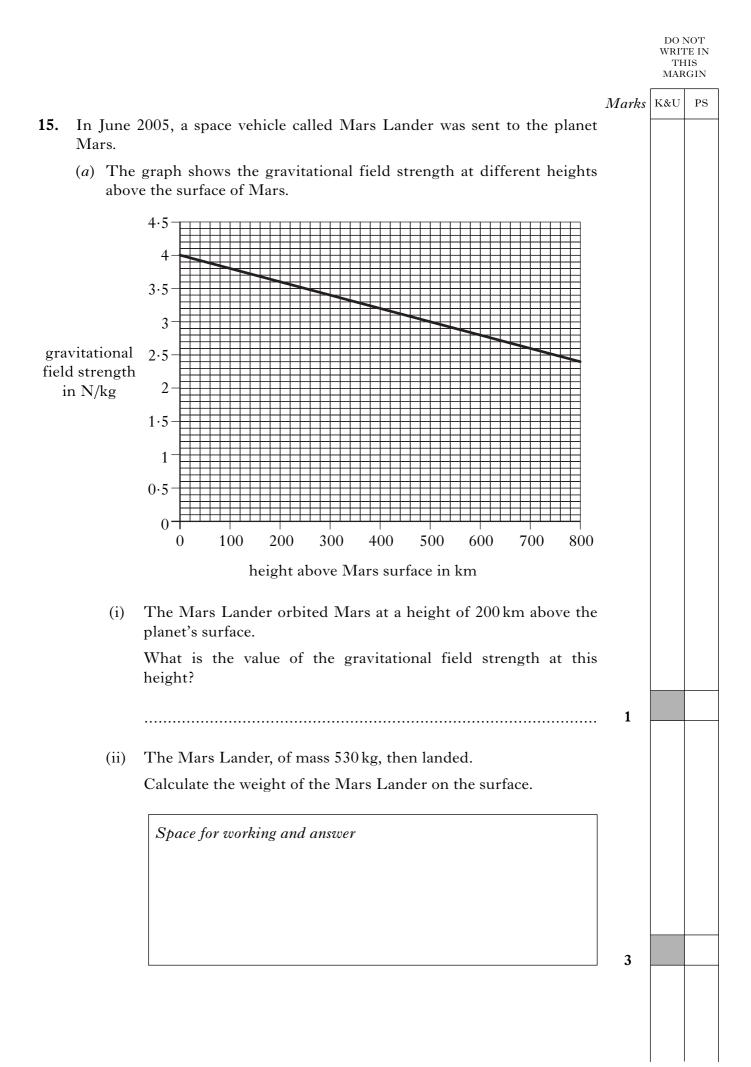

Marks K&U

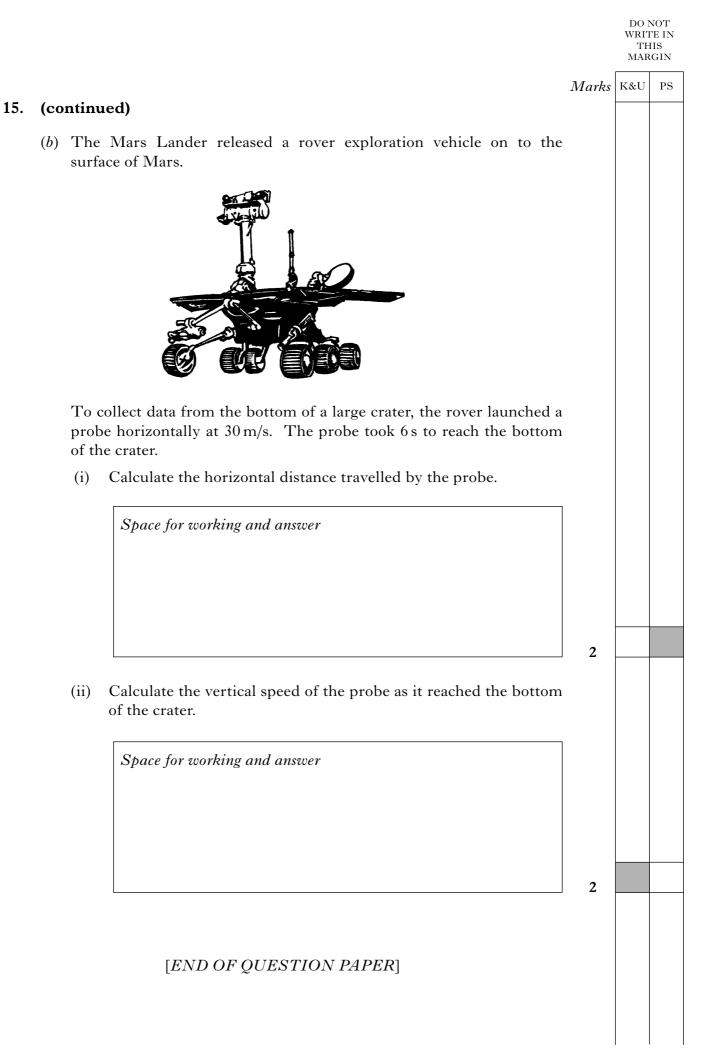

(a) The aeroplane accelerates from rest to its minimum take off speed in 2 s. (i) Calculate the acceleration of the aeroplane. Space for working and answer 2 Calculate the force required to produce this acceleration. (ii) Space for working and answer 2 (iii) The aeroplane's engines provide a total thrust of 240 kN. An additional force is supplied by a catapult to produce the acceleration required. Calculate the force supplied by the catapult. Space for working and answer 1 [3220/402] Page eighteen


An aeroplane on an aircraft carrier must reach a minimum speed of 70 m/s

to safely take off. The mass of the aeroplane is 28 000 kg.

11.





					TH	
2	۸	.1		Marks	K&U	PS
			ric kettle is used to heat 0.4 kg of water.			
	(<i>a</i>)		initial temperature of the water is 15 °C.			
			ulate how much heat energy is required to bring this water to its ng point of 100 °C.			
		Spa	ace for working and answer			
				3		
	(<i>b</i>)		automatic switch on the kettle is not working. The kettle is ched off 5 minutes after it had been switched on.			
		The	power rating of the kettle is 2000 W.			
		(i)	Calculate how much electrical energy is converted into heat energy in this time.			
			Space for working and answer			
				2		
		(ii)	Calculate the mass of water changed into steam in this time.	2		
			Space for working and answer			
				3		

increa		represents tl elength. Some						
		Electr	omagnetic	Spectrum				
amma rays	Р	Ultraviolet	Q	Infrared	R	TV and Radio		
		incr	easing way	velength			-	
(<i>a</i>) ((i) Nam	e radiation:	Р					
			Q					
			R				2	
(1		ch radiation in lency?	the electro	omagnetic spe	ectrum has	the highest		
							1	
		ultraviolet ar						
	nfrared.	etector for eacl	h of these	two radiations	s.			
		et					2	
_							_	
						[Turn over		

Page twenty-five

K&U PS

YOU MAY USE THE SPACE ON THIS PAGE TO REWRITE ANY ANSWER YOU HAVE DECIDED TO CHANGE IN THE MAIN PART OF THE ANSWER BOOKLET. TAKE CARE TO WRITE IN CAREFULLY THE APPROPRIATE QUESTION NUMBER.

[BLANK PAGE]

[BLANK PAGE]