

Rast Papers Nat 5 Physics 2014 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade				
A	68+	24.9%				
В	57+	23.2%				
С	47+	20.4%				
D	42+	8.9%				
No award	< 42	22.6%				
Section:	Multiple Choice	Extended Answer	Assignment			
Average Mark:	11.3 /20	32.4 /60	11.4 /2			

2014 Nat5 Physics Marking Scheme

Question	Answer	Physics Covered									
1	D	Voltage is a measure of the energy given to charge carriers in a circuit.									
2	D										
_		Lamp Voltmeter Resistor Fuse									
3	В	 A Would only work if R₁ and R₂ have same resistance. This is not stated in question. B The readings of current on A₁ and A₂ are equal if the ammeters are accurate C This set up would short circuit the cell and little current would flow through A₂ Only some of the current in A₁ would flow through A₂ but could not assess the accuracy of the reading in A₂ without a current reading in the other branch. E This set up would short circuit the cell and little current would flow through A₂ 									
4	С	Gravitational Potential Energy at 0.25mKinetic Energy at 0.25m E_p = ?m=0.50kgg= 9.8. N kg^{-1}h=0.25m E_p = mghkinetic energy at 0.25m is gained from conversion of potential energy from 1.00m to 0.25m. E_p = mgh E_p = 0.50 x 9.8 x 0.25 E_p = 0.50 x 9.8 x 0.75 E_p = 1.2 J E_p = 3.7 J									
5	В	$p_{1} = 6.0 \times 10^{5} \text{ Pa} \qquad V_{1} = 2.5 \text{ m}^{3} \qquad T_{1} = 27^{\circ}\text{C} = 300 \text{ K}$ $p_{2} = ? \qquad V_{2} = 5.0 \text{ m}^{3} \qquad T_{2} = 54^{\circ}\text{C} = 327 \text{ K}$ $\frac{p_{1} V_{1}}{T_{1}} = \text{ constant} = \frac{6.0 \times 10^{5} \text{ x} 2.5}{300} = 5000$ $\frac{p_{2} V_{2}}{T_{2}} = \text{ constant} = \frac{p_{2} \text{x} 5.0}{327} = 5000$ $p_{2} = \frac{5000 \text{ x} 327}{5.0}$ $p_{2} = 3.3 \times 10^{5} \text{ Pa}$									
6	A	 A Volume-Time graph is a straight line going through the origin. B At absolute zero temperature in Kelvin, the volume is zero (line should go through origin) C This graph does not show an increase in temperature gives an increase in pressure D The Volume-Time graph is a straight line relationship not a curve E This graph does not show an increase in temperature gives an increase in pressure 									
7	А	Temperature Change in degrees Celsius = 50°C − 17°C = 33°C ∴ Temperature Change in Kelvin = 33K									
8	С	Period T = 8ms = 0.008s $T = \frac{1}{f} \therefore 0.08 = \frac{1}{f} \therefore f = \frac{1}{0.008s} = 125Hz$									
9	В	All forms of electromagnetic radiation have a speed of 3×10^8 m s ⁻¹ EM Type Gamma X-Ray Ultra-violet Visible Infra-Red Microwave Radio & TV Energy High Frequency High Wavelength LOW High									
10	В	Radiation TypeAlphaBetaGammaDescriptionHelium NucleusElectron from the nucleusElectromagnetic Radiation									

		Statement I -	Correct		Statement II	- Inc	orrect	Statement	III - Correct			
11		A lead screen will re			e equivalent d			Statement III - Correct The longer the time the sample is				
11	E	of radiation reachir	ple th	e further away	-	-	exposed to radi	ation, the higher				
		and reduces the equ			rom the sourc				t dose will be.			
12	А	$A = \frac{N}{t} = \frac{1.44 \times 10^8}{2 \times 60 \times 60} = 20000 \text{ Bq} = 2 \times 10^4 \text{ Bq}$										
12	<u>^</u>	t 2x60x60										
		Statement I - In	correct	Staten	nent II - Cor	rect	S	tatement III - (Correct			
13	E	Neutrons are us			uclear fission			-	e from a nuclear			
_		bombard a uraniun in nuclear fiss			ctions release neat energy			eaction can then uclei to split in a	-			
		Vector Quantity	force	· · · · ·	velocity	disn	lacement	acceleration	weight			
14	A	Scalar Quantity	energ		speed	-	istance	time	mass			
				·· ·	Displacer	ment	= 2.6 km a	nt 203				
						/						
						θ		$x = \sqrt{2}$	$(4)^2 + (1.0)^2$			
				1 0)	1</td <td>2.4km</td> <td>$x = \sqrt{5.7}$</td> <td>$\frac{(4)^2 + (1.0)^2}{(6+1)^2}$</td>	2.4km	$x = \sqrt{5.7}$	$\frac{(4)^2 + (1.0)^2}{(6+1)^2}$			
		Distance Travelle	a = 2.4km = 3.4km			/		$x = \sqrt{6.7}$				
15	Е		- 3.481				,	x = 2.6 k	m			
15						0km						
					ta	n θ =	opp adi = -	$\frac{1.0}{2.4} = 0.417$.	. θ = 23°			
			$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{1.0}{2.4} = 0.417 \therefore \theta = 23^{\circ}$ $\therefore \text{ bearing} = 180^{\circ} + 23^{\circ} = 203$									
		Average speed = 3.4 km in 1 hour Average velocity = 2.6 km at 203 in 1 h										
			.4 km h ⁻¹		,	1010	-	$km h^{-1}$ at 203				
		E _w = ?			F = 10 I	N			d = 3 m			
				E _w =		d						
16	D			F =	10 x	3						
						-						
		A thicker the elas	tic tho gr		30 J	d on	hall · 5m	n ovorts loss for	co than 15mm			
			-									
17	D	 ☑B thicker the elastic the greater the force exerted on ball ∴ 10mm exerts less force than 15mm ☑C thicker the elastic the greater the force exerted on ball ∴ 10mm exerts less force than 15mm 										
		\square D the thickest elastic (15mm). and the. lowest mass of ball (0.01kg) gives greatest acceleration \blacksquare E the greater the mass of the ball the less the acceleration of the ball due to: $a = \frac{F}{m}$										
		A Gravitational f B forces acting a		-	-				ily force acting			
18	Е	C if air resistance			•			•	n speed			
10	L	ED if weight was greater than air resistance then spacecraft would increase in speed										
		☑E balanced force	s of weig	ht and a	ir resistance	resu	lt in consta	ant speed				
		A Ball leaves poin				•						
19	C	B As ball drops fr		-	•	-						
19	C	C Time to hit the ground is the same (1s) and distance travels is further than 2mD As ball drops from same height at point R to the ground then time to land is still 1 second.										
		E As ball drops fro										
					Chang	e of Sta	te					
			Chang	e of State_	-	oration						
				elting				gas				
20	D				l N							
			∕∕¦ _{so}	lid	liquid							
					 		· · · · · · · · · · · · · · · · · · ·					
			2	6 1	10		30					

Question	Answer	Physics Covered								
1a	1.44 W	$P = \frac{V^2}{R} = \frac{(12.0)^2}{100} = \frac{144}{100} = 1.44 \text{ W}$ (1 mark) (1 mark) (1 mark)								
1b(i)	20 Ω	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$ (1 mark) $\frac{1}{R_{T}} = \frac{1}{100} + \frac{1}{50} + \frac{1}{50}$ (1 mark) $\frac{1}{R_{T}} = \frac{1}{20}$								
1b(ii)	One answer from each row	1 mark for Effect 1 mark for Justification	The other lam remains lit The current still has a path through the other lamp.	stays on The lamps are connected in parallel	is the same brightness The current in the other lamp is the same (only acceptable if other lamp stays same brightness)	(1 mark) gets brighter The current in the other lamp is greater (only acceptable if other lamp gets brighter)	is not affected It has the same voltage or 12 V (across it)			
2a(i)	700 Ω	$V_{2} = V_{s} - V_{1} = 5.0V - 2.0V = 3.0V (1 \text{ mark})$ $I = \frac{V_{2}}{R} = \frac{3.0}{1050} = 2.857 \times 10^{-3} \text{ A}$ $R_{1} = \frac{V_{1}}{I} = \frac{2.0}{2.857 \times 10^{-3}} = 700 \Omega$ $1 \text{ mark for Ohm's Law equation} \qquad 1 \text{ mark for substitutions} \qquad 1 \text{ mark for final answer including units}$								
2a(ii)	80°C	re	esistance (Ω) 4000 - 3000 - 2000 - 1000 - 700 - 0 - 0 -			70 80 90 1 temperatu	00 re (°C)			
2b(i)	Answer to Include:	1 mark	When $\begin{cases} V_{th} \text{ increases} \end{pmatrix} V_{th} = 1 \\ V_{th} = 1 \\ V_{th} = 1 \\ V_{th} = 1 \\ V_{th} = 1 \end{cases}$	2∙0 V ches switching	voltage] [MOSFET transistor	turns on			
2b(ii)	Answer to Include:	1 mark Resi	witch on 🕇	mistor must	pe greater ncrease					

[E = ?				D ·	= 15 W	t – 10 i	minutes = 10x60 s
	Working showing	L - :	Е	=	Р	x	- 15 W	(1 mark)	111111111111111111111111111111111111111
3a								(1	
	9000 J		E	=	15	х	10x60	(1 mark)	
			E	=	9000 J				
				requi	re differen	it quan	tities of heat	to raise the te	mperature by the
2h(:)	V	same temp		, of h	oot oporav	ic cun	plied to each	block	
3b(i)	Х					-			ture slowest (X)
			-	•		•			ture fastest (Y)
		E = 9000J			c = ?		m = 1.0 kg		$5^{\circ}C - 15^{\circ}C = 10^{\circ}C$
		E	=		с	х	m	х	∆T (1 mark)
3b(ii)	900 J kg ⁻¹ °C ⁻¹	9000	=		с	х	1.0	х	10 (1 mark)
	-			_			1.0	Λ	-
		С	=		00 J kg ^{-1 o} C	-1			(1 mark)
3c(i)	One answer from:	Insu	lating the	e (met	tal) block		<u>or</u> Swit	ch heater on t	or shorter time
		If previ	ous answ	er wa	is For Insu	lating	If previou	s answer was l	For Shorter Time
3c(ii)	One answer from:	Inc	roaco	or	Greate	r		crease oi	
			lease	U	Ulcate	-1	De		LOWEI
		f = ?					Waves N =		time t = 20s
				Ν	4				
			t =-	t	- =)	= 0.2 Hz (1 m	ark)	
	••• -1								
4a	2.4 m s⁻¹	f = 0.2Hz				2	. = 12m		v = ?
				ν	=	f	х	λ (1 mark)	
				•	=	0.2		12 (1 mark)	
					=	2.4 m		(1 mark)	
							•		
					ST.	P			
				stu	udent 🕌				
					Ĵ				
		_				_			
		1.1.1	_	-	_	Π.		angle o	
	Diagram			pier				incidenc	e
4b	Diagram								× .
	showing:						air		2
	0	1.1		_		-			
						V V		angle of	
							re	efraction fis	h Door
		1 mark m	ark for r	ay c	hanging c	lirecti	on at water	/air bounda	гу –
									raction in air
		Total Effec	-						
		Elevation a	above sea	leve	l = 2km ∴.	Elevat	on above sea	level adjustm	ent = 1.12
		Cloud Cov	er = overc	_	-				
					Total Effect UV radiation	x	Elevation a	v	Cloud
	Л		UV Index	=			sea level adju 25		justment _
5a	4						23		
				Γ	280	v	1.12	х	0.31
1 I					200	х	1.1/	~	0.51
			UV Index	= [280	X		^	0.51
			UV Index	=	280	X	25		0.31

	Р	(Q)	R								
5b	(R)	R	Р	Problem Solving C	uestion	processing	; informat	ion from	multiple lines	on a lin	e graph
5c	One	answer	from:	Detecting cou bank not			Settir dental fi	-	Any other sensible answer.		
6a		aken for the active sourc	-	The time taken f		ctivity d count ra	ate ((of a radioactive source) to half.			
6b(i)	Answ	er to in	clude:		Measure Re	nt in a set regular) ir	a set time interval ar) intervals ount) and subtract				
6b(ii)	1	0 minut	es	1 mark Measure background (con					count the Work time i on th	y halvin correcte rate on y-axis. out the nterval e x-axis halving	d
6b(iii)	5.5 cou	unts per	minute	88 →	44		corrected cou	int rate (1 m →	ark) 11	→	(1 mark) 5.5 Counts
7	(Open Ended Questio	n	1 mark Candidate has demonstrated understanding of the physics in make some statement(s) that t to the situation, showing that understood at least a little of within the problem	volved. They are relevant they have the physics	2 ma Candidate has de reasonable unders physics involved. Th statement(s) that are situation, showing understood the	emonstrated a standing of the hey make some re relevant to the that they have	involved. The situation and po This type of r involved, a rela respond to the	3 mark is demonstrated a good u ey show a good comprehi rovide a logically correct a response might include a tionship or an equation, a problem. The answer doe mpleter' for the candidate	nderstanding ension of the p answer to the statement of t and the applica is not need to	hysics of the question posed. the principles ation of these to be 'excellent' or
8a(i)	9.0)x10 ⁻⁵		D = ?	D D D	$E = 7.20$ $= \frac{E}{m}$ $= \frac{7.2x1}{80.0}$ $= 9.0x10$			(1 mark) (1 mark) (1 mark)		= 80.0kg
8a(ii)	9.0)x10⁻⁵		H = ? H H	=	D = 9.0x1 D 9.0x10 ⁻⁵ 9.0x10 ⁻⁵ Sv	.0 ⁻⁵ Gy x v	Vr 1	(1 mark) (1 mark) (1 mark)	V	v _R = 1
8b	One	answer	from:		Wh	en an atom	lo	ins ses or loses	electrons		
9	(Open Ended Questio	n	1 mark Candidate has demonstrated understanding of the physics in make some statement(s) that to the situation, showing that understood at least a little of within the problem	volved. They are relevant they have the physics	2 ma Candidate has de reasonable unders physics involved. Th statement(s) that are situation, showing understood the	rks emonstrated a standing of the hey make some e relevant to the that they have	Candidate ha involved. Th situation and p This type of r involved, a rela respond to the	3 mark s demonstrated a good u ey show a good comprehe rovide a logically correct a response might include a tionship or an equation, a problem. The answer doe mplete' for the candidate	nderstanding ension of the p answer to the statement of t and the applica is not need to	physics of the question posed. the principles ation of these to be 'excellent' or

										
			-	-	u = 0 m s ⁻¹		t = 25 s			
10a(i)	0.19 m s ⁻²	a =	ν	<u> </u>	$\frac{4.8 - 0}{25} =$	= 0.19 m s ⁻²				
		(1 ma		t	25 (1 mark)	(1 mark)				
		The boat has a constant	-	ity as the line			rizontal The			
10a(ii)	constant speed or	boat is neither speeding								
100(1)	constant velocity	speed with only magnitu	-	-		seity would al				
						_] .			
10a(iii)	One diagram from:	forward Boat	fi	riction o	r friction	Boat	forward			
		force					force			
			8							
		(m s		/						
		Velocity (m s ⁻¹)				\backslash				
		eloe		00	6	\backslash				
10b(i)	2244 m	>	0	25	450	510				
100(1)				Time						
		Area 0			ea 🛿		ea 🕄			
		Distance = area under g	raph							
		$=\frac{1}{2} \times 25 \times 4.8$			8 x 425	=	x 60 x 4.8			
		= 60		= 20		= 14	14			
					+ 2040 + 144 = 2					
10h/::)	4.4 m s ⁻¹	ν	to	tal distance	$=\frac{2244}{510}=4$	4.4 m s⁻¹				
10b(ii)	4.4 111 5		mark)	time	510 (1 mark)	(1 mark)				
	T	Maximum weight of passer		= maximum tak			elicopter			
11a	To check that the maximum take-off weight	= 24000 N – 13500 N								
110	is not exceeded.	= 10500 N 10500 N is approximately 1071 kg so total mass of passengers must not exceed 1071 kg								
11b	19625 N	Minimum upward force real	quireu	at takeon = v	13500 N		25 N			
	13023 11			=	19625 N					
		d = 201 km = 201000 m		cruising spe	ed v = 67 m s ⁻¹		t = ?			
		d	=	ν	t	(1 mark)				
11c	3000 s	201000	=	67	x t	(1 mark)				
		d	=	3000 s		(1 mark)				
		W = ?	-	m = 0.9	4ka		g = 9.8 N kg ⁻¹			
		W - !	=	m = 0.9	4Kg g	(1 mar	• •			
12a	9.2 N				-					
	0.2.11	W	=	0.94	x 9.8	(1 mar	k)			
		W	=	9.2 N		(1 mar	k)			
		Total Area of three fins								
12b	1.5x10 ⁻⁴ Pa		P =	F =	$\frac{9.2}{0 \times 10^{-4}} = 1.5 \times 10^{-4}$)⁻⁴ Pa				
	1.5/10									
		ן – – – – – – – – – – – – – – – – – – –	(1 ma	ur) (]	. mark) (1 mar	r) F				
12c	One answer from:	rocket	push	nes down on v	vater, water pu	shes up on	rocket			
		bottle	1. 2.01				bottle			
		F _{un} = upthrust – weight	= 37	0 – 9.2 = 360	.8 N (1 mark)					
424	200^{2}	a = ?			60.8 N		m = 0.94 kg			
12d	380 m s ⁻²		a =	<u>F</u> _ 3	<u>60.8</u> = 380 n	n s ⁻²				
		more water will	(1 ma	,	nced force		leration			
12e	Two answers from:	increase weight/mas	ss		reases		less			
			-			15				