

Rast Papers Nat 5 Physics 2015 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	68+	28.9%
В	58+	23.3%
С	48+	21.8%
D	43+	8.5%
No award	<43	17.4%

Section:	Multiple Cho	oice	Extended /	Answer	Assignmer	nt
Average Mark:	13.0	/20	32.1	/60	12.7	/20

2015 Nat5 Physics Marking Scheme

Question	Answer	Physics Covered									
		Х	Y		Z						
		Ohmmeter	Voltme	eter	Ammeter						
1	А	measuring resistance	measuring v	voltage	measuring current						
-		Ohmmeter is placed in	Voltmeters are pla	ace in parallel	Ammeters are						
		series with component.	around the comp	onent being	connected in series						
		No cell required.	measur	red	in a circuit.						
		Statement I - Correct	Statement II -	Incorrect	Statement III - Incorrect						
2	А	Voltage is defined as a	A cell or battery ha	as a voltage at	Electrons are						
		measure of the energy given to	all times whether c	connected in a	free to move						
		Combining Parallel Resistors	: Co	ombining Ser	ries Resistors:						
		4 Ω		4	Ω 2Ω						
			•								
_		<u>4Ω</u>									
3	С		1								
		$\overline{R_T} = \overline{R_1} + \overline{R_1}$	R ₂								
		$\frac{1}{2} = \frac{1}{4} + -$	1	_							
		RT 4 1 2	4	$K_1 - K_1 + K_2 - 4S_2 + 2S_2 - 0S_2$							
		$\overline{R_{T}} = \overline{4}$									
		$R_T = 2 \Omega$									
Λ	F	$P = \frac{V^2}{V}$, $Q_{20} = \frac{(230)^2}{(230)^2}$, $P = \frac{52900}{100} = 5750$									
-	L	R R R 920 - 57.552									
		A There is no change in Tempera	ature so there is no c	change in Kineti	c Energy						
5	D	✓B Increase in pressure means more air particles hit the sides of the syringe ✓C There are more collisions with the sides of the syring or their pressure is increased.									
5	D	There are less collisions with the sides of the syringe when pressure is decreased									
		E There is no change in Tempera	ature so there is no c	hange in Kineti	c Energy						
		<i>p</i> ₁ = 150 kPa T ₁ = 27°C = 300 K									
		volume. constant	p ₂ = ?	T ₂ = 47°C	= 320 К						
			p ₁ p ₂	,							
			$\frac{T_1}{T_1} = \frac{T_2}{T_2}$	<u> </u>							
6	Р		150 na								
0	U		$\frac{150}{300} = \frac{p_2}{320}$	0							
			500 520	0							
			$p_2 = \frac{150}{2}$	0 x 320							
				300							
			$p_2 = 1$.60 kPa							
7	Л	3 complete waves = 3 wavel	engths = 18mm								
/	U	= 1 wavel	ength = 6mm								
		Statement I - Correct State	ement II - Incorre	ct St	atement III - Incorrect						
0	۸	Light waves are transverse Radio	waves travel at 3x10 ⁸ m	S ⁻¹ EM Type Gamm	na X-Ray Ultra-violet Visible Infra-Red Microwave Radio & TV						
ð	А	waves. All forms of li	ke all other forms of	Frequency Hig	h ← → Low						
		are transverse waves Sound	waves travel at 340m	S ⁻¹ Wavelength LOV	v ← High						
	_		atoms	s lose electrons a	nd become positively charged						
9	C	Ionising describes the process	where atoms	gain electrons a	^{or} nd become <i>negatively</i> charged						

		Statement I - Correct	Statement II - Incorrect	Statement III - Correct					
10	F	Shielding of tissue with a	Increasing the distance from the	Increasing the time of exposure will					
10	L .	lead screen will reduce the	source will <u>reduce</u> the equivalent	increase the equivalent dose					
		equivalent dose received	dose received by the tissue	received by the tissue					
		H = ?) = 16μGy = 16x10 ⁻⁶ Gy	$w_R = 20$					
			$H = D x W_R$						
11	E		$H = 16 \times 10^{-6} \times 20$						
			$H = 220 \times 10^{-6} \text{ Sy}$						
			$= 320 \mu Sv$						
		A = ?	N = 240	t = 1 minute = 60s					
10	Λ	N.	240						
12	A	$A = \frac{1}{+}$	$=\frac{240}{60}$ = 4 Bq						
		L	00						
	_	X	Y	Z					
13	E	Fusion	Fission Nuclear fission occurs when a	Energy The release of energy in fission and fusion					
		nuclei join together to make a bigger nuclei	larger nuclei spits into two smaller nuclei	reactions can be used as an energy source.					
		Vector quantities have magnitu	de <u>and</u> direction while scalar qu	antities only have magnitude.					
14	C	Vector Quantity force	velocity displacement	acceleration weight					
		Scalar Quantity energy	speed distance	time mass					
		Statement I - Incorrect St	atement II - Correct	Statement III - Incorrect					
15	В	X is accelerating as its Y i	s undergoing constant Z is not	t undergoing constant acceleration					
10	U	velocity is increasing by acc	celeration as velocity is as the	velocity is not increasing by same					
		2 m s ⁻ every second lincreas	ing by 1 m s ⁻ every second	amount every second.					
		$E_w = ?$	F=2500N	a = 50m					
16	C		Ew – F u						
10	C		$E_{\rm w} = 2500 {\rm x} 50$						
			E _w = 125000 J						
		A The reaction force is the chair on	the person						
		B This is the same force not the read	ction force						
17	A	C The person is not touching the Ear	th directly so there is no reaction force	e of the Earth on the person					
		LED The force of the chair on Earth is not the reaction force to the person sitting on the chair							
		Statement L Incorroct	Statement II Correct	Statement III Incorrect					
10		At terminal velocity the weight of the	As terminal velocity, the object is	The object is travelling at a constant					
18	В	balance is equal to the air resistance	travelling at constant velocity	velocity at terminal velocity so not					
		acting on the passage	indicating forces are balanced	accelerating					
		d = v	x t						
10	F	$d - 2v10^8$	v 4 2 v 265 25 v 24 v 6	50 x 60					
19	L L	u - 3x10	x 4.5 x 505.25 x 24 x 0						
		d = 4.1×10^{16} m							
		Line Spectrum From Star							
		Calcium							
20	D	Helium							
		Hydrogen							
		Sodium							
		Sodium							

Question	Answer	Physics Covered							
		Cell		L	amp	R	esistor	Switch	
1a			_		\sim				
		∣■			\mathcal{S}				
		V = 2.5 V		V	I = 0.1 = I	5 A R	(1 mark)	R = ?	
1b	5 Ω			2.5	= 0.5 x	R	(1 mark)		
				R	= 5Ω		(1 mark)		
		Effect (1 mark)				Justificat (2 marks)	ion		
1c	Answer to include:	(1 mark)	(1	mark)	Creater ex		(1 mark)	L (then that in NA)	
		brighter	(with	resistor)	Greater current in/through lamp L (than that in M)				
	1 mark: Graph X	LED are light e	mitting	diodes on	ly conduct e	lectricity	in on directio	n in a circuit.	
2a	1 mark: LED only conducts	Graphs Y & Z c	an be ru	uled out a	s they show	that elect	tricity flowing	in both directions.	
	in one direction	Graph X has a indicating curr	positive ent flow	voltage &	e direction of	: has no n nlv	egative voltag	ge & current	
		P = ?		ing in one	V = 4.0 V	, ,		I = 0.50A	
				P =	V	Ι	(1 mark)		
				P =	4.0 x	0.50			
2b(i)	120 J			Р =	2.0 W				
		P = 2.0 W		F	E = ? F			t = 60 s	
			P =	<u>t</u> ∴	$2.0 = \frac{1}{60}$	∴ E = 2.	0 x 60 = 1	.20 J	
			(1 m	nark)		(1 n	nark) (1	mark)	
		Q = ?		0	I = 0.50A		(4	t = 60s	
2b(ii)	30 C			Q = Q =	і 0.5 х	τ 60	(1 mark)		
				Q =	30 C				
3a(i)	15ms	Position Y is th	inner th	nan positio	on X.				
		Position Y will	reflect	oulse first	at 5ms and p	oosition X	will reflect p	ulse second at $15ms$	
		u – !		d =	v = 5200ms	s :	(1 mark)	t – 151115 – 15X10 ⁻ S	
25(;;)	0.020m			d = 5	200 x 15x	(10 ⁻ ⁶	(1 mark)		
5d(II)	0.05911			d = 0.0	078m		(1 mark)		
				Thickne	$ss = \frac{0.078}{2} =$	0.039m	(1 mark)		
	40 pulse		1	mark Ver	tical line bet	ween 5 a	ind 15 on x-ax	<i>k</i> is	
			1	mark Am	plitude betw	veen 25 a	nd 40 on y-ax	kis l	
3b	25	The imperfecti	on at P	osition Z is	s between th	e thickne	ess at Position	s X and Y meaning the	
		time taken and and Y	d amplit	ude of the	e reflected p	ulse will k	be between th	ne values at Position X	
	0 5 15								
		f = ?			-		T =	= 4.0μs = 4x10 ⁻⁶ s	
	2.5x10⁵ Hz			f	$=\frac{1}{T}$	— (1 m	ark)		
3c(i)	or				1				
	250,000Hz			f	$= \frac{1}{4 \times 10^{-6}}$. (1 m	ark)		
				£	- 2 Ev10	⁵ H7			
				ſ	- 2.5X1U	ΠΖ			

		$v = 5200 \text{ m s}^{-1}$	f = 2.5x10 ⁻	⁵ Hz	$\lambda = ?$					
			v = f x	λ (1 mark)						
3c(ii)	0.021 m		$5200 = 2.5 \times 10^{-5} \times 10^{-5}$	λ (1 mark)						
			λ = 0.021 m	(1 mark)						
		1 mark Spe	need of ultrasound in brass is less than in steel							
3d	Answer to include:	1 mark Tak	es greater time to tra	vel same distance/th	nickness.					
	2	1 mark	2 marks	3 m	arks					
A	Open	Candidate has demonstrated a limited understanding of the physics involved. They	produnderstanding of the physics prehension of the physics of the							
4	Ended	make some statement(s) that are relevant to the situation, showing that they have	rect answer to the question posed. Ide a statement of the principles							
	Question	understood at least a little of the physics within the problem.	r does not need to be 'excellent' or date to gain full marks.							
5a	air diamond angle of angle of normal	Angle of incidence is mea	asured from the norm asured from the norm	al to the light ray go nal to the light ray ins	ing into the diamond side the diamond					
5b	Decreases	When light passes into a	diamond the speed o	f light decreases						
		The higher the optical density the higher the degree of refraction.								
5c	В	This leads to a greater bending of light towards to the normal so the angle of refra								
		P = ?	F = 61 kN = 6100	DON	A = 1.1x10 ⁻⁵ m ²					
54	5 5v10 ⁹ Pa	$P = \frac{F}{1000} = \frac{61000}{1000} = 5.5 \times 10^9 Pa$								
50	3.3710 14	$\begin{array}{c} A \\ (1 mark) \\ \end{array}$								
6	• • • • • • • • • • • • • • • • • • • •	The thicker the paper the lo	e paper.							
69	Increases	By making the paper thinne	per will increase.							
6h(i)	Answer to include:	Choice of Radioactive Sou	Long half-life							
00(1)	Answer to mendue.	(1 mark)	(1 mar	rk)	(1 mark)					
6b(ii)	One answer from:	Time for activity to (d	ecrease by) half	e nuclei to decay						
		Gamma radiation is one	form of electromagne	etic radiation:						
	(high frequency)	EM Type Energy	Gamma X-Ray Ultra-violet	Visible Infra-Red Microwave I	Low					
6b(iii)	electromagnetic wave	Frequency	High 🖌		Low					
		Wavelength	Low 🖌		High					
		activity (kBq)	1000							
6c	2 hours	Count rate halves from 600kBq to 300kBq	900 800 700 600 500 400 0 1 200 0 0 1 2 3.4 5 <u>Time Inte</u> = 3.4 hours – 1.4 ho = 2 hours	6 7 8 rval time (hours) urs	Take any halving of the corrected count rate on the y-axis. Work out the time interval on the x-axis for this halving.					

7a(i)	10x10 ³ N or 1.0x10 ⁴ N or 10000 N	8.0x10 ³ N θ x 6.0x10 ³ N $x = \sqrt{(6000)^2 + (8000)^2}$ $x = \sqrt{36000000 + 64000000}$ $x = \sqrt{100000000}$ $x = 10000 \text{ km} = 10x10^3 \text{ km} = 1x10^4 \text{ km}$
7a(ii)	37°	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{6.0 \times 10^3}{8.0 \times 10^3} = 0.75 \therefore \ \theta = 37^\circ$
7a(iii)	2x10 ⁻³ m s ⁻²	$F = 10x10^{3}N$ $F = m$ $F = m$ $10x10^{3} = 5.0x10^{6} x$ $a = (1 \text{ mark})$ $m = 5.0x10^{6} x$ $a = 2.0x10^{-3} \text{ m s}^{-2}$ (1 mark)
7b	Answer to include:	1 mark 1 from: Buoyancy force Upthrust force of water on ship flotation force 1 from: 1 mark 1 from: Weight Force of Gravity
8a(i)	Answer to include:	1 mark 1 mark 1 mark length/width time taken for card to pass time taken (for trolley to travel from of card of card (through) the light gate starting position) to light gate
8a(ii)	One answer from:	reaction time (can cause errorcard may not have passed straightlength/width of card not measured properlyother suitablewith the stop clock reading)through light gate(e.g. ruler not straight along card)reason
8b	0.64 m s ⁻²	a = ? $v = 1.6 \text{ m s}^{-1}$ $u = 0 \text{ m s}^{-1}$ $t = 2.5 \text{ s}$ a = $\frac{v - u}{t}$ = $\frac{1.6 - 0}{2.5}$ = 0.64 m s ⁻² (1 mark) (1 mark) (1 mark)
9a		 A suitable curved path where the ball does not increase in height. The stone will have fall vertically faster the further it falls due to gravity The horizontal velocity will remain the same
9b(i)	7.8 m s ⁻¹	$a = 9.8 \text{ m s}^{-2} \qquad v = ? \qquad u = 0 \text{ m s}^{-1} \qquad t = 0.80 \text{ s}$ $a = \begin{array}{c} v & - & u \\ & & 1 \end{array}$ $9.8 = \begin{array}{c} v & - & 0 \\ & & 0.80 \end{array}$ $9.8 \times 0.80 = \begin{array}{c} v & - & 0 \\ & & 0.80 \end{array}$ $9.8 \times 0.80 = \begin{array}{c} v & - & 0 \\ & & 0.80 \end{array}$

									1				1
			υ= ?	ົບ	$=\frac{u+1}{2}$	<u>v</u>	u 	$= 0 \text{ m s}^{-1}$	$\frac{7.8}{2} = 3.$	9 m s	⁻¹ (1 mark)	v = 7	′.8 m s⁻¹
			d – 2		2		4	د م – ۲۵	Z m s ⁻¹			+ - (1 90 c
9b(ii)	3.1 m		u – :		Ч	_	5	0 - 5.9	+	(1 mar	k)	ι – ι	1.60 \$
					u d	=	3.0) x	ι 0.80	(1 mar	к) k)		
									0.00		,		
					d	=	3.1	m		(1 mar	k)		
			The time	e taken fo	r a stone	e to	hit the	water v	vhen drop	ped v	ertically is th	ie same	e as the
9c	same time		time tak	en when	thrown	hori	zontall	y as the	vertical co	mpor	nent is subje	ct to th	ie same
			accelera	tion due	to the gr	avit	ationa	i field st	rength bei	ng the	e same.		
	Open		C	1 mark	A . B . S . A	6	2 ma	arks	Candidate	has demo	3 marks nstrated a good under	rstanding of '	the physics
10	Ended		understanding	g of the physics in	nvolved. They	reaso	onable unde	rstanding of th	e involved. e situation and	They show provide a	a good comprehension logically correct answ	on of the phy ver to the qu [,]	sics of the estion posed.
10	Question		to the situat	tatement(s) that ion, showing tha	are relevant t they have	statem	ent(s) that a	They make sor are relevant to	the involved, a re	of respons elationship	e might include a stat	ement of the	principles on of these to
	Question		understood w	at least a little of ithin the problen	the physics n.	situai u	tion, showin inderstood t	ig that they hav he problem.	respond to th	ne problen complete'	n. The answer does no for the candidate to g	t need to be ain full mark	'excellent' or s.
			E _p = ? m	= 0.040k	g g = 9.	.8 N	kg⁻¹ h	= 0.50m	1				
					Ep =	:	m	g	h		(1 mark)		
11a(i)	0.20 J				En =	: 0	.040	x 9.8	x 0.50	1	(1 mark)		
					Ξp	0	.040	x 9.0	x 0.50		(2		
					Ep =	: 0	.20 J		_		(1 mark)		•
11a(ii)	One answer from	n۰			kinetio	c ene	ergy to		kine	tic en	ergy of mark	ble	
110(1)	one answer nor				heat (a	and	sound)		to kii	netic e	energy of sa	nd.	<u> </u>
				<u>1 marl</u>	<u><</u>			<u>1 n</u>	<u>nark</u>		<u>1</u>	<u>. mark</u>	
11b(i)	Graph showing			suitabl	e		all po	ints plot	ted accura	ately	best	est fit curve	
			scale	s, labels a	and units	S	t	o ± half	a division				
11b(ii)													
							1 m	ark for e	ach answe	er:			
11b(iii)	Any two from:		Repeat		Take	(moi	re) rea	dings in	Increase	Increase the		id or other	
	,		(and average)		the 0.15m to 0.35m drop		height r	height range		Sl	uitable		
					1	neig	nt rang	ge			urops	Impi	overnent
				eight of m	arble	an	gle of ir	mpact	diamet	er of n	narble	type o	f sand
11C(i)	One variable from	m:	radius	of marble	density	vofi	marble	volume	of marble	spee	d of marble	tim	e of drop
11c(ii)	Answer to incluc	le:	1 mark	How ind	epende	nt va	ariable	can be i	neasured/	/chang	ged		
			1 mark	State at	least on	e ot	ner val	riable to	be contro	liea			
	-												
	_												
	-												
	0.080												
									•	•			
	0 070							••••					
	0.070												
	0.060-												
	0.000												
	Ê 0.050			•									
L) 0.050 L) 0.040 L) 0.040 L) 0.040 L) 0.040													
	0.020												
	0.020												
	0.010												
	0.010												
	-											7	

0.35 0.40

0.45 0.50

0.30

0.000

| 0.05

0.10

0.15

0.20 0.25

Height (m)