

Rast Papers Nat 5 Physics 2016 Marking Scheme

Grade Awarded	Mark Required (/ ₁₀₀)	% candidates achieving grade
A	69+	31.3%
В	58+	23.5%
С	48+	19.1%
D	43+	8.1%
No award	<43	17.9%

Section:	Multiple Choice		Extended	Answer	Assignment	
Average Mark:	12.7	/20	32.9	/60	13.2	/20

2016 Nat5 Physics Marking Scheme

Question	Answer			Physics Covered									
		А	В	С	D	E							
		LDR	Transistor	LED	Photovoltaic cell	Thermistor							
1	С	~ ~ ~		11									
-	•		— [.										
						~							
		☑A A negative part	ticle will bend towa	rds a positively cha	arged plate								
•		B A negative part	ticle will not bend to	owards a negative	ly charged plate								
2	A	C Particles with r	C Particles with no charge will not deflect in a uniform electric field										
		E A positive parti	icle will not bend to	wards a positively	charged plate								
2	5	$A_1 = A_2 + A_3$	$\therefore \mathbf{A}_3 = \mathbf{A}_1 - \mathbf{A}_3$	= 5.0 A - 2.0 A	A = 3.0 A								
3	D	$A_1 = A_4 + A_5$	$\therefore \mathbf{A}_5 = \mathbf{A}_1 - \mathbf{A}_4$	= 5.0 A - 1.0 A	A = 4.0 A								
				$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$									
			F	$R_T = R_1 = R_2$	2								
				$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$	_								
4	С		$R_T = 8 + 24$										
				1 = 4									
			F	R _T 24									
			F	$R_{T} = 6 \Omega$									
		Minimum pressure	exerted would be fro	om the side of bloc rea = $1 \times h = 0.2 \times 0$	k with largest area. $1 = 0.02 \text{ m}^2$								
5	В	P = ?	F	= 4.9 N	.1 - 0.02 m	A = 0.02 m ²							
Ū			$P = \frac{F}{F}$	4.9	245 Pa								
		A 0.02											
		Temperature: Constant $p_1 = 120 \text{ KPa}$ $V_1 = 150 \text{ mm}^3$ $N_2 = 2$ $V_2 = 100 \text{ mm}^3$											
				P2 ·	V2 100 H								
			p	$_{1}V_{1} = p_{2}V_{2}$	V ₂								
6	С		120	$x 150 = p_2 x$	100								
			120	x 150									
			1	.00 - p	2								
			180) kPa = <i>p</i>	2								
		☑A temperature-pr	essure gives a straig	ht line on graph wh	lich does not go thro	ough origin in °C							
7	А	S Graph does not	show an increase in	temperature giving	g a increase in press	ure							
-		D Graph does not	show an increase in	temperature giving	g a increase in press	ure							
		E If temperature s	scale is measured in	°C then line will not	t go through origin o	on graph							
		Statement	t - Correct	Statement II - II	ncorrect Statem	ent III - Incorrect							
Q	Δ	energy in a tran	or transferring	Long wav	more The	amplitude is							
0	~	higher the amp	litude of a wave	than short	ter inder	pendent of the							
		the more energ	gy is transferred	wavelengt	ths v	vavelength							

		<u>fr</u> number of wave	equency (f) es that pass a p	oint in one	Wavel	engtł	n (λ)					
		wa	second. velength (λ)		\wedge	\wedge	$\wedge \wedge$	amplitude				
9	Е	horizontal dis	tance between	any two	()	$ \rangle$	$ \rangle \rangle$	amplitude				
		corresponding p	oints on adjace	ent waves.	'\		$\langle \rangle $	\mathbf{N}				
		vertical distance m	neasured from t	the middle of	١	J	VV	\vee				
		the wave to t	ne top or to the	e bottom		•		-				
		Speed of Waves:			Frequency	y:						
10	C	$v = \frac{d}{t}$	$=\frac{3}{3}$ =	1 m s ⁻¹	$f = \frac{N}{t} = \frac{3}{3} = 1 \text{ Hz}$							
		A Angles of refrac	tion correct di	irection of bend	and rays i	n air a	re parallel					
11	Δ	B Angle of reaction	n in 1ª glass b niddle air sect	ends wrong wa ion should be n	y as glass (arallel to a	denser	than air. oing in 1 st glas	s				
		D Angle of refract	ion in both gla	iss is wrong as t	hey are eq	jual to	the normal	5				
		E Angle of ray bet	ween glass lay	vers should be p	arallel to a	angle o	f original ray					
10	Р	Particle	Nature o	of Particle	<u> </u>	Mass		Charge				
	В	Alpha Particle Beta Particle	Flectron from	nucleus	L Sr	arger naller		Negative				
		Ionising radiation ca	n cause atoms	to become cha	rged ions.							
			Ion Formed	l Positi	ve lon	Ne	gative Ion]				
13	B		Change to form	n lon Loss of	electron	Gair	of electron]				
		when forming an io same as it would tak	vnen forming an ion, electrons are lost or gained by the atom. The number of protons stays the									
	-	Vector Quantity	force	velocity	displacement acceler			weight				
14	E	Scalar Quantity	speed	distar	nce	time	mass					
		A Ball will accelerat	e down the slo	pe at Q which w	ould give a	uphill	straight line at	end of graph				
15	П	些B Ball will accelerate down the slope at Q which would give a uphill straight line at end of graph 国C Ball will accelerate down the slope at O which would give a uphill straight line at end of graph										
15		D Graph is horizontal at P as bal has constant speed and uphill straight line at Q as it accelerates.										
		E Ball has constant	velocity at P so	graph will be ho	orizontal in	first se	ection of graph	10				
		E _k = ?	г –	m = 80	kg L v oo		(10)2	$v = 10 \text{ m s}^{-1}$				
16	П		$E_k =$	$\frac{1}{2}$ mv ² = $\frac{1}{2}$	x 80	х	(10)-					
10				$E_k = \frac{1}{2}$	<u>x</u> 80	х	100					
				$E_{k} = 40$	1 000 J							
		🗷 A The Earth is not i	n contact with	the exhaust gase	es so there	is no re	eaction force fr	om the Earth.				
17	E	B The Earth is not in contact with the rocket engine so there is no reaction force from the Earth.										
1/	L	ID The exhaust gases are not in contact with the Earth so no reaction force										
		☑E The reaction forc	e is the force of	f the exhaust gas	ses on the r	rocket e	engines					
		A Horizontal veloci	ty will still be 1. ty will still be 1	$.5 \text{ m s}^{-1}$ as there 5 m s $^{-1}$ as there	is negligible is negligible	e air re e air re	sistance and de	pes not slow down				
18	С	☑C vertical velocity \	$v_v = u_v + at = 0$	$+ (9.8 \times 1.2) = 11$.76 = 12 m	s ⁻¹ . Ho	prizontal veloc	$ity = 1.5 \text{ m s}^{-1}$				
	_	D vertical velocity	$v_v = u_v + at = 0$	+ (9.8x1.2) = 11	.76 = 12 m	ו S ⁻¹						
		E Horizontal velocit	y will still be 1.	5 m s^{-1} as there is	is negligible	e air re	sistance and do	bes not slow down				
	_		rr F =	і = 0.5 Kg m	x	I	ι = 22.6X1(J₋ 1 KB _				
19	D		E =	0.5	x 2	2.6x10) ⁵					
			E =	1.13x10 ⁶ J								
		Statement I -	Correct	Statement I	I - Incorre	ect	Statemer	nt III - Correct				
20	D	The Big Bang theor	y is a theory	The universe is	approxima	ately	The u	iniverse is				
		about the origin of	the universe	14 billion	years old		always	expanding				

Question	Answer	Physics Covered						
		Q = 24 C I = ? t = 0.0012 s						
		Q = I t (1 mark)						
1a	20000 A	$24 = I \times 0.0012 (1 \text{ mark})$						
		I = 20000A (1 mark)						
		$1.6 \times 10^{-19} \text{C} = 1 \text{electron}$						
1b	1.5x10 ²⁰	24 C = 1 electron x $\frac{24 \text{ C}}{1000 \text{ C}}$						
		1.6x10 ⁻¹⁹ C						
		= 1.5x10 ²⁰ electrons						
1.	A	1 mark metal strip is a conductor						
10	Answer to include:	1 mark more current will pass through the strip than building						
2a	Voltmeter across resistor R	variable resistor						
2b	One answer from:	increase decrease vary change						
2c	Calculations showing:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	Or Graph Showing:	1 mark 2 marks <u>1 mark</u>						
		Suitable All points Line drawn and gradient						
		scales & labels plotted accurately calculated to be 5Ω						
2d	Answer to include:	Resistance is - not constant Increasing						
		$E = ? c = 4180 \text{ kJ kg}^{-1} \circ C^{-1} m = 6.00 \text{ kg} \Delta T = 40^{\circ}C - 15^{\circ}C = 25^{\circ}C$						
2	Working showing:	$E = c \qquad m \qquad \Delta T \qquad (1 mark)$						
3a	627000J	E = 4180 x 6.00 x 25 (1 mark)						
		E = 627000 J						
		P = 1800 W E = 627000 J t = ?						
3b(i)	350 s	$P = \frac{E}{t} \therefore 1800 = \frac{627000}{t} \therefore t = \frac{627000}{1800} = 350 s$						
		(1 mark) (1 mark) (1 mark)						

3h(iii)	One answer from:	He	at (energy)	is lost (fror	n the wate	er) to the	washi drum surroi clothi	ng machi undings ng	ne	
30(11)	One answer from.	Or washing machine drum Some of the energy is used to heat up the								
								ng		
		1 mark	V	oltage ac	ross ther	mistor de	creases	;		
3c	Answer to include:	1 mark	MOSF	FET/trans	istor swi	tches off/	deactiv rolav d	ates	00	
		L IIIdIK K		nhotodia		nhototran	sistor		mistor	
4a	One answer from:	thermom	eter	CCD	tl	hermochror	nic film	therm	locouple	
		EM Type	Gamma	X-Ray l	Jltra-violet	Visible II	nfra-Red	Microwave	e Radio & TV	
		Energy	High	•					Low	
4b	Gamma	Frequency	High	•					Low	
		Wavelength	Low	•				>	High	
			m s⁻¹	f =	1.2GHz	z = 1.2x1	0 ⁹ Hz		λ = ?	
	0.25m	ν	=		f	х	λ		(1 mark)	
4c(i)		3x10 ⁸	=	1.2	x10 ⁹	Х	λ		(1 mark)	
			=	0.2	.5m					
				visible	ight ,					
		X-r	avs	ultra-	infr	ared	mic	rowaves		
4 c(iii)		X Tuys		violet						
40(11)	microwave									
					1				1	
		10 ⁻¹⁰	10 ⁻⁸	³ 1	0 ⁻⁶	10 ⁻⁴	10 ⁻²		1	
					wavelengti	n (m)		0.25	m	
		1 ma	ırk	2 m	arks	Candida	3 m	arks		
		Candida demonstrate	te has d a limited	Candidate has demonstrated a		Candidate has demonstrated a good understanding of the physics involved.			involved.	
		understand	ing of the	reaso understan	nable ding of the	They show a good comprehension of the physics of the situation and provide a			sion of the provide a	
5	Answer to include:	make some st	atement(s)	physics invo	olved. They	logically c	orrect ans	wer to the	e question	
		that are relevent	ant to the	statement	(s) that are	a stateme	nt of the p	orinciples i	nvolved, a	
		they have und	derstood at	relevan	t to the	relation	ship or an	equation,	and the	
		least a little of within the	the physics problem.	that the	ey have	problem. T	he answei	r does not	need to be	
				underst prob	ood the lem.	'excellent'	'excellent' or 'complete' for the candidate to gain full marks.			

6a(i)	Normal as drawn in Diagram	air Perspex angle on refraction
6a(ii)	Angles of Incidence and angle of refraction as drawn in diagram	ray of red light
6b(i)	8°	angle of refraction (°) 5 0 0 0 10 20 30 angle of incidence (°)
6b(ii)	Any angle between 40° and 42° (inclusive)	Extrapolate the curve until it hits 80° on the angle of incidence axis and read the angle of refraction axis.
6c	Any Answer from:	To obtain moreEliminate rogueTo allow an average/meanMorereliable resultsresults/outliersto be calculatedaccurate
7a	8.8 x 10 ¹⁵ Bq	A = ? N = 7.92x10 ¹⁸ nuclei decayed t = 15min = 15x60s = 900s A = $\frac{N}{t} = \frac{7.92x10^{18}}{900} = 8.8x10^{15}$ Bq (1 mark) (1 mark) (1 mark)
7b	400W	Heat Generation = No. of decays x 4.49×10^{-14} (1 mark) = 400W (1 mark)
7c	One answer from:	Alpha is more easilyAlpha is less penetrating than gammaGamma is more penetrating than Alphaabsorbed/stopped/blockedthan gammaGamma is absorbedAlpha is absorbed by thinner materials/less dense materials.Gamma is absorbed by thicker materials/more dense materials.
8a(i)	1.9 x10⁻⁴ Gy	D = ? D = ? D = $\frac{E}{m}$ (1 mark) D = $\frac{9.6 \times 10^{-5}}{0.50}$ (1 mark) D = 1.9×10^{-4} Gy (1 mark)
8a(ii)	1.9 x10 ⁻⁴ Sv	H = ? H = $D = 1.9 \times 10^{-4} \text{ Gy}$ H = $D \times W_R$ (1 mark) H = $1.9 \times 10^{-4} \times 1$ (1 mark) H = $1.9 \times 10^{-4} \text{ Sv}$ (1 mark)

	0.75kBq	No. of half-lives = $\frac{144}{36}$ = 4 (1 mark)								
86	Or 750 De				Halving	of activity	(1 mark)		ı	(1 mark)
	750 Bd	12	\rightarrow	6	\rightarrow	3	\rightarrow	1.5	\rightarrow	0.75 kBq
		Vertical o	displace	ement =	54m –	14m =	= 40m H	orizonta	l I	-
9a(i)	85 m	40m	θ	75m x		*		$x = \sqrt{(1)}$ $x = \sqrt{5}$ $x = \sqrt{7}$ $x = 85$	75) ² + 5625 + 7225 m	$(40)^2$ 1600
	062		tan A -	opp .	tan A	75	= 1 875	· A - 62	° =	062
9a(ii)	or		tan 0 –	adj	tan o	40	- 1.075	0-02	- (1	mark
	62° East of North				(1 n	nark)	_		(1	тагк)
		ῡ = ?			_	s =	85 m	14		t = 68 s
				s =	υ		t	(1 n	nark)	
9b(i)	1.3m s ⁻¹ at bearing 062			85 =	ΰ	х	68	(1 n	nark)	
				ΰ =	1.3 m	s ⁻¹		(1 n	nark)	
		Average velocity $\bar{\upsilon}$ = 1.3 m s ⁻¹ at bearing 062								
9b(ii)	<u>1 mark</u> distance is greater than displacement <u>1 mark</u> same time	The distand student wa displaceme time period divided by	ce travel alks back ent. Beca d, the av the time	led is grea 14m and use the to erage velo taken.	iter thai this 14r otal dist ocity is l	n the dis n is subt ance and ess beca	placemen racted fro d the disp use the d	t as in the om the 54 lacement isplaceme	e vertic m to w take pl ent is le	al direction.The ork out the lace over the same ass before being
		a = ?		v = 2.5 r	n s⁻¹		u = 0) m s⁻¹		t = 1.4 s
10a	1.8 m s⁻²		a	$= \frac{v}{v}$	- 1	<u>u = 1</u>	2.5 -	0 =	1.8 m s	-2
				(1 mark)	t		1.4 (1 mark)		(1 mark)	
					_					
10b	6.71 m				(2 1 -0 2-0 3	0 4-0 5-0 6	5-0 7-0 8-0 time (s)		
			Area 🛛)		Are	ea 🛛			Area 🕄
		Distance	= area ur	nder grap	n Dista	nce = are	ea under g	graph Di	stance	= area under graph
			= ź x 1.4	x 2.5		= ± 2	x 1.6 x 1.2	2		= 1.6 X 2.5
			Total D	istance tr	hallave	= U.S	ספ חכ – 1 סנ	5m + 0.06	$m \pm 4m$	= 4
	1			istance li	uveneu		.03 1.7.	0.30	10.0.40	i = 0.7 III

10c	labelled diagram showing:	1 mark (1 from) (air) friction drag air resistance Force of Rope 1 mark (1 from) Force of gravity weight					
11	Answer to include:	1 mark 2 marks 3 marks Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Candidate has demonstrated a genoration and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.					
12a	2.9x10 ⁴ N						
12b(i)	$\underset{energy}{light} \rightarrow \underset{energy}{electrical}$	Photovoltaic cells are solar cells that turn light energy into electrical energy					
12b(ii)	Maximise the light received (from the Sun)	Photovoltaic Cells work best when the solar cells are perpendicular to the sun. The greater the angle sunlight hits the panels the lower the voltage produced.					
12b(iii)	2.8x10 ⁶ J	$E = ?$ $P = 395 W t = 2 Hours = 2x60x60 s$ $E = P t (1 mark)$ $E = 395 x 2x60x60 (1 mark)$ $E = 2.8x10^{6} J (1 mark)$					
12c(i)	40 N	Four 10 N thrusters pushing in same direction gives total thrust = 40 N					
12c(ii)	0.02 m s ⁻²	$ \begin{array}{c} m = 3.00 \times 10^{3} \text{ kg} - 1.00 \times 10^{3} \text{ kg} = 2.00 \times 10^{3} \text{ kg} {}_{(1 \text{ mark})} \\ a = ? & F = 40 \text{ N} & m = 2.00 \times 10^{3} \text{ kg} \\ a = \frac{F}{m} = \frac{40}{2.00 \times 10^{3}} = 0.02 \text{ m s}^{-2} \\ {}_{(1 \text{ mark})} & {}_{(1 \text{ mark})} & {}_{(1 \text{ mark})} \end{array} $					
13a	Nuclei combine to form larger nucleus	Nuclear fusion is the combining of two smaller nuclei into a larger nucleus with a greater mass. Energy can be released in the process.					
13b	5505 K	Temperature in °C = Temperature in K – 273K = 5778K – 273K = 5505K					
13c	working showing 4.1x10 ¹⁶ m	$d = v x t (1 \text{ mark})$ $d = 3x10^8 x 640 x 365.25 x 24 x 60 x 60 (1 \text{ mark})$ $d = 4.1x10^{16} \text{ m}$					
13d	One answer from:	The light/radiation from the explosion has not <u>or</u> The light takes time reached the Earth yet radiation 640 years					