

Grade Awarded	Mark Required $(/ 100)$	\% candidates achieving grade
A	$68+$	31.7%
B	$56+$	21.5%
C	$45+$	20.0%
D	$39+$	9.4%
No award	<39	17.5%

Section:	Multiple Choice	Extended Answer		Assignment	
Average Mark:	11.9	120	31.7	160	13.5

2017 Nat5 Physics Marking Scheme

3c	One graph from:	axes labelled $\mathbf{p} \frac{1 \text { mark }}{\text { and } \mathbf{V} \text { (axes can be transposed) }}$		graph of \mathbf{p} against ${ }^{1 / v}$ mark $\left(o r \mathbf{V}\right.$ against $\left.{ }^{1} / \mathrm{p}\right)$		
		$\frac{1 \text { mark }}{\text { correct shape (curved) }}$		1 mark labelled with straight line through the origin		
				 (0)		
4a(i)	0.40 Hz		$\begin{aligned} T & =\frac{1}{f} \\ 2.5 & =\frac{1}{f} \\ f & =0.40 \mathrm{H} \end{aligned}$	(1 mark) (1 mark) Hz (1 mark)		
4a(ii)	One answer from:	measure the time for more waves to pass	count the number of waves in a longer period of time		repeat (the measurement) and average	
4b	$3.2 \mathrm{~m} \mathrm{~s}^{-1}$	$v=?$	$\begin{aligned} f & =0.4 \mathrm{~Hz} \\ v & =f \\ v & =0.40 \\ v & =3.2 \mathrm{~m} \end{aligned}$		λ	$=8.0 \mathrm{~m}$
4c		1 mark diffraction of waves into 'shadow' regions behind walls 1 mark straight sections in middle and consistent wavelengths before and				
4d	energy decreases/lost	The amplitude of a wave is proportional to the energy of the wave. As the wave loses energy the amplitude of the wave decreases.				
		1 mark	2 marks	3 marks		
5	Answer to include:	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.		
6 a	background count (rate)	The background count rate must be subtracted from the activity count to exclude the contribution of background radiation from the activity.				
6b(i)	4.4 mm					Take any halving of the corrected count rate on the y-axis. Work out the thickness on the x axis for this halving.

