


Papers pas 9 CS **D18** ng Scheme Marki

Grade	Mark R	equired	° condidatos cobiovino onodo
Awarded	/ ₁₂₅	%	% candidates achieving grade
A	86+	68.8%	31.2%
В	72+	57.6%	23.3%
С	58+	46.4%	20.5%
D	44+	35.2%	14.6%
No award	< 44	<35.2	10.4%

Section:	Multiple Cho	ice	Extended A	Answer	Assign	ment
Average Mark:	16.4	/25	39.4	/75	17.2	/25

2018 Nat5 Physics Marking Scheme

Question	Answer	Physics Covered							
		Vector Quantity	force	velocity	displacement	acceleration	weight		
1	E	Scalar Quantity	mass	speed	distance	time	energy		
2	D	Total distance =	50m + 120m	+ 50m + 120m	า = 340m				
2	D	Displacement =	0m as start ai	nd end positio	ns are the san	ne.			
		A there is the fo		•					
		B there is no ho	rizontal force ad	cting on a ball th	rown vertically				
3	E	C once the ball s			•	-	all		
		区D there is no up				-	tons moving up		
		$\square E$ Only force of g E _w = ?	avity is actilig	F = 120			d = 25 m		
		Lw - :		$E_w = F$	d		u – 25 m		
				$E_{w} = 120$					
	-			$E_w = 3000$					
4	С			Lw = 3000	J				
		P = ?		E = 300			t = 5.0 s		
				$\mathbf{E} = \frac{\mathbf{E}}{3}$	<u>000</u> 5.0 = 600 W	,			
				$r - \frac{1}{t} = \frac{1}{t}$	5.0 - 600 W				
		A galaxy is a coll	ection of star	s. Each star m	ay have a sola	r system where	e a collection		
5	Α	of planets orbiti	ng around a s	tar. Each plan	et many have	natural moons	orbiting those		
		planets or artific	ial satellites i	n orbit.					
		Satellite		dium-124	Satellite		Astra-5B		
6	С	Orbital Heigh		630 km	23000 kr		36000 km		
		Period Satellite has orbital he		7 minutes	(835 minu R : satellite bas n		440 minutes		
		Rocket travels a							
7	D	so when the eng	-						
/	D	constant speed							
		☑A Mass is the	-		gravitational fi	eld strength is	greater.		
		🗷 B Mass does r	-		-	-	-		
8	А	☑C For weight t							
-		ED Mass does r							
		⊠E For weight t							
		d =	ν	х	t				
9	D	d =	3x10 ⁸	x 8.6 x	365.25 x 24 x				
5	U	-		Λ 0.0 X	JUJ.25 X 24 X				
		d =	8.1x10 ¹⁶ m						
		line spectrum f	rom star						
					└──┼─				
		EI	ement X						
10	ſ								
10	C	EI	ement Y						
		EI	ement Z						
			-						
	_	Statement I	- Correct		II - Correct	Statement	III - Correct		
11	E	In an a.c. circuit th			negative charges		it the size of the		
		the current does ch	nange regularly	do flow in one	direction only.	current does v	varies with time.		

		Temperature: Cons	tant $p_1 = 1.2 \times 10$ $p_2 = ?$		V ₁ = 4.0x10 ⁻⁵ m ³ V ₂ = 0.80x10 ⁻⁵ m ³					
			p_1V_1	= p ₂	V ₂					
19	E	1.2	x10 ⁵ x 4.0x10⁻⁵	$= p_2 \times 0.8$	0x10 ⁻⁵					
		1.2	x10 ⁵ x 4.0x10 ⁻⁵ 0.80x10 ⁻⁵	= р	2					
			6.0x10 ⁵ Pa	= р	2					
		Statement I - Incorrect	Statement II - Co		Statement III - Incorrect					
20	В	Refraction occurs when waves pass from one medium to another	Diffraction is grea in waves with a longer wavelen		crowaves have a shorter wavelength than radio waves so microwaves diffract less than radio waves					
21	A	 ☑ B Radiation R is X-rays as ☑ C X-rays have a higher fre ☑ D Radiation R is X-rays as 	 ☑A Radiation R is X-rays and have a higher frequency than visible light ☑B Radiation R is X-rays as this radiation is between gamma and ultraviolet ☑C X-rays have a higher frequency than visible light ☑D Radiation R is X-rays as this radiation is between gamma and ultraviolet ☑D Radiation R is X-rays as this radiation is between gamma and ultraviolet ☑E Radiation R is X-rays as this radiation is between gamma and ultraviolet 							
22	С	$= ? \qquad \rho = 1.02 \times 10^{3} \text{ kg m}^{-3} \qquad g = 9.8 \text{ N kg}^{-1} \qquad A = 3.5 \text{ m}$ $E = \frac{\rho g A^{2}}{2} = \frac{1.02 \times 10^{3} \times 9.8 \times (3.5)^{2}}{2} = \frac{122451}{2} = 61226 \text{ J} = 6.1 \times 10^{4} \text{ J}$								
		\dot{H} = 0.40 mSv h ⁻¹	H = 1		t = 30minutes = 0.5h					
23	A	$\dot{H} = \frac{H}{T}$	$0.40 = \frac{H}{0.5}$	H =	0.40 x 0.5 = 0.20 mSv					
	_	$200 \text{kBq} \rightarrow$	\rightarrow 100kBq \rightarrow	50kBq	\rightarrow 25kBq					
24	В			ves in 12 d ife = 4 d						
		Х	Y		Z					
25	В	Fusion Nuclear fusion reactions involve 2 smaller nuclei joining together to make a larger nucleus		ions only ce at	Energy Energy can be released when small nuclei join together in a fusion reaction					

Question	Answer	Physics Covered							
1a(i)A	230 kN	$x = \sqrt{(138)^2 + (184)^2}$ $x = \sqrt{19044 + 33856}$ $x = \sqrt{52900}$ $x = 230 \text{ kN}$							
1a(i)B	143	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{184}{138} = 1.333 \therefore \theta = 53^{\circ}$ Bearing = 90° + 53° = 143							
1a(ii)	3.4 m s ⁻²	$ \begin{array}{ccccc} F = 230000 \ N & m = 6.8 \times 10^4 \ \text{kg} & a = ? \\ F & = & m & a & (1 \ \text{mark}) \\ 230000 & = & 6.8 \times 10^4 \ \text{x} & a & (1 \ \text{mark}) \\ a & = & 3.4 \ \text{m} \ \text{s}^{-2} & (1 \ \text{mark}) \end{array} $							
1b	Answer to include:	1 mark mass weight (downward) force 1 mark pressure is force per unit area 1 mark pressure is force per unit area							
2a(i)	One answer from:	Time for card to $\left\{egin{array}{c} { m cut} \\ { m pass through} \end{array} ight\}$ light gate X							
2a(ii)	0.46 m s ⁻¹	$v = \frac{\text{length of card}}{\text{time for card to cut beam}} = \frac{0.045}{0.098} = 0.46 \text{ m s}^{-1}$							
2a(iii)	0.25 m s ⁻²	a = ? $v = 0.46 \text{ m s}^{-1}$ $u = 0.32 \text{ m s}^{-1}$ $t = 0.56 \text{ s}$ a = $\frac{v - u}{t}$ = $\frac{0.46 - 0.32}{0.56}$ = 0.25 m s^{-2} (1 mark) (1 mark)							
2b	0.72 m	$\begin{bmatrix} velocity \\ (m s^{-1}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \cdot 4 \\ time (s) \\ \end{bmatrix}$ Distance = area under graph = $\frac{1}{2} \times 2.4 \times 0.6$ = 0.72 m							
2c	Graph showing	velocity Unterference of velocity Unterfer							
За	2400J	$E_k = ?$ m = 75 kg v = 8.0 m s ⁻¹ $E_k = \frac{1}{2}$ m v ² (1 mark) $E_k = \frac{1}{2}$ x 75 x (8.0) ² (1 mark) $E_k = 2400 J$ (1 mark) (1 mark) (1 mark) (1 mark)							

		$E_p = 2400 \text{ J}$ m = 75 kg g = 9.8 N kg ⁻¹ h = ?
		$E_p = m \qquad g \qquad h \qquad (1 mark)$
3b(i)	3.3 m	
		$2400 = 75 \times 9.8 \times h$ (1 mark)
		h = 3.3 m (1 mark)
3b(ii)	One answer from:	Energy lost (as heat and sound) due to
56(1)		air resistance
3c(i)		 A suitable curved path where the bike does not increase in height. The bike will have fall vertically faster the further it falls due to gravity The horizontal velocity will remain the same
		a = 9.8 m s ⁻² v = ? u = 0 m s ⁻¹ t = 0.40 s
		$a = \begin{array}{c} v - u \\ t \end{array} $ (1 mark)
		t
3c(ii)	3.9 m s⁻¹	$9.8 = \frac{v - 0}{0.40}$ (1 mark)
		0.40
		$9.8 \times 0.40 = v - 0$
		$3.9 \text{ m s}^{-1} = v$ (1 mark)
A = (1)	2.20-1011	d = 1.5x10 ¹¹ x 1.52
4a(i)	2.28x10 ¹¹ m	$d = 2.28 \times 10^{11} \mathrm{m}$
		d = 2.28×10^{11} m v = 3.0×10^{8} m s ⁻¹ t = ?
4a(ii)		d = v x t (1 mark)
	760 s	$2.28 \times 10^{11} = 3.0 \times 10^8 \times t$ (1 mark)
		t = 760 s (1 mark)
		solar cells solar panels generator (RTG)
4b(i)	One answer from:	nuclear reactors radioisotope thermoelectric
		Fuel load on take-off Pressure differential Re-entry through an atmosphere
4b(ii)	One answer from:	Manoeuvring in zero friction environment Potential exposure to radiation
		1 mark 2 marks 3 marks
5	Answer to include:	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem.
		$V_s = 4.0 V$ $V_2 = ?$ $R_1 = 2.0 \Omega$ $R_2 = 18 \Omega$
		$V_2 = \frac{R_2}{R_1 + R_2} \times V_s$ (1 mark)
6a	3.6 V	
		$V_2 = \frac{18}{18 + 2.0} \times 4.0$ (1 mark)
		$V_2 = 3.6 V$ (1 mark)
6h(:)	One answer from:	To limit the current (in the LED)
6b(i)		Also accepted:
		To reduce the voltage across the LED To protect/prevent damage to the LED
		Each branch of circuit has same voltage = 3.4V. Voltage of 1.6 V is across each LED ∴ 3.4V - 1.6V = 1.8 V across each resistor
		V = 1.8 V I = 25 mA = 25x10 ⁻³ A R = ?
6b(ii)	72 Ω	V = 1.8 V I = 25 mA = 25x10 ⁻⁵ A R = ? V = I R (1mark)
		$1.8 = 25 \times 10^{-3} \times R$ (1 mark)
		$R = 72 \Omega \qquad (1 \text{ mark})$

tanding of the nension of the							
-							
-							
-							
-							
cally correct esponse might I, a relationship to respond to e 'excellent' or II marks.							
5°C = 8°C							
(1 mark)							
(1 mark)							
(1 mark)							
gy) is used beaker.							
V = 12V							
_							
t = ?							
1 mark Measure the energy supplied 1 mark E _h = ml							
<u> </u>							
ptable)							
$\frac{x10^3}{53}$ = 374							
1 mark for a statement of relationship: $\frac{p}{T}$ = constant or							
l Method							
Graph drawn on graph paper with							
nd units							
ately							
oarticles							
353							
122							
6							
-							
the							
the y heated							

		D = ? $v = 3x10^8 \text{ m s}^{-1}$ $t = 2.1x10^{-8} \text{ s}$							
		d = v x t (1 mark)							
10a	6.3 m	$d = 3.0 \times 10^8 \times 2.1 \times 10^{-8}$ (1 mark)							
		d = 6.3m (1 mark)							
10h/i)	One answer from:	vibrations/oscillations are in the same vibrations/oscillations are in the same							
10b(i)	One answer from:	direction as the energy transfer. direction as the wave is travelling.							
		No. of wavelengths shown = 4 (each triple line represents the beginning/end of a wave) 1 st wavelength 3 rd wavelength							
10b(ii)	0.068m	2 nd wavelength 4 th wavelength							
		$\lambda = \frac{0.272m}{4} = 0.068m$							
		$f = ?$ $v = 340 \text{ m s}^{-1}$ $\lambda = 0.068 \text{ m}$							
10b(iii)	5000 Hz	$v = f \times \lambda$ (1 mark)							
100(11)	5000 112	$340 = f \times 0.068$ (1 mark)							
		f = 5000 Hz (1 mark)							
11a	One answer from:	photodiode phototransistor thermistor LDR							
		thermocouple thermopile CCD							
	0.90 Hz	70% of infrared light receivedMedium category givesCalculation of frequencyfalls in the medium category54 Wipes per minuteCalculation of frequency							
		Number No. of times N = 54 (1mark)							
11b		$f = \frac{N}{t} (1mark)$							
110		⁵⁰ Low 18							
		$f = \frac{54}{60}$ (1mark)							
		low medium high High 78 f = 0.90 Hz							
	Normal drawn as shown in diagram	raindrop infrared light							
11c(i)A		infrared light							
		angle of angle of							
		reiraction incidence							
	Angle of incidence	normal							
11c(i)B	and angle of refraction drawn as								
	shown in diagram	glass windscreen							
11c(ii)	Answer to include:	1 markWavelength in water is greater than in glass1 markSpeed of light in water is greater than in glass							
12a	One answer from:	1 mark Speed of light in water is greater than in glass Fast electron high-energy electron An electron from the nucleus							
		Activity of tritium Fewer beta particles							
12b	Answer to include:	1 mark source is less or emitted per second							
		1 mark Less light produced							
L									

		D = 0.40 mGy	v = 0.40x10	-3 Gy			E = ?			m =	85kg
12c(i)					D	$=\frac{E}{m}$		(1 mark)		
	0.034 J			0.40x	10 ⁻³	= <u>E</u> 85		(1 mark)		
					E	= 0.03	84 J	(1 mark)		
		H = ?			D =	0.40 mG	/ = 0.40	x10 ⁻³	Gy	wr = 1	
12c(ii)	4.0 x10 ⁻⁴ Sv			Н	=	D	х	Wr	(1 mark)		
120(11)	4.0 ×10 50			Н	=	0.40x10	³ X	1	(1 mark)		
				Н	=	4.0x10 ^{-/}	¹ Sv		(1 mark)		
13a(i)	One answer from:	The counter reading will inc the source and background				-	ind will ubtrac			easure/determi rate due to the	
13a(ii)	Any suitable source										
13b(i)	Line graph showing:	Suitable labels ar	ŀ	All points plotted Accurately to ± half a division			on	Best fit curve			
13b(ii)	30 minutes	Take any halv these point c	-		ted (Count Rat	e axis a	nd ex	trapolat	te the time take	n from
12 (;)	Answer to include:	1 ma	irk Red	uce the	dist	ance betv	veen th	e det	ector ar	nd the source	
13c(i)	Answer to include:	1 ma	irk i			by a few is a few o		or	•	a has a shorter g than Gamma	
		A = 520 Bq				N =	= ?			t = 15s	
13c(ii)	7800				A	$= \frac{N}{t}$		(1 mark)		
					520	= <u>N</u> 15		(1 mark)		
					Ν	= 780	0	(1 mark)		