

Grade Awarded	Mark Required		$\%$ candidates achieving grade
	l_{125}	$\%$	
A	$86+$	68.8%	31.8%
B	$72+$	57.6%	22.5%
C	$58+$	46.4%	20.3%
D	$44+$	35.2%	14.7%
No award	<44	$<35.2 \%$	10.7%

Section:	Multiple Choice	Extended Answer		Assignment		
Average Mark:	15.5	125	40.3	175	17.3	125

2019 Nat5 Physics Marking Scheme

4b(i)	The distance light travels in one year	A light year is the distance electromagnetic radiation like light travels in one year. A light year has a distance: $d=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times 1 \times 365.25 \times 24 \times 60 \times 60 \mathrm{~s}=9.5 \times 10^{15} \mathrm{~m}$						
4b(ii)	$9.2 \times 10^{17} \mathrm{~m}$	$\begin{aligned} \mathrm{d} & =v \\ \mathrm{~d} & =3 \times 10^{8} \\ \mathrm{~d} & =9.2 \times 10^{17} \mathrm{~m} \end{aligned}$			$\begin{aligned} & x \\ & x \quad 97 \times 3 \end{aligned}$	$97 \times 365.25 \times 24 \times 60 \times 60$		(1 mak) (1 mark) (1 mark)
4c(i)	One answer from:	No atmosphere to absorb light		full range of EM waves can be observed		can be used in daytime or cloudy weather		no light pollution
4c(ii)	One answer from:	GPS		weather forecasting		communications	scientific discovery	
	Graph showing:	1 mark			1 mark		1 mark	
5a(i)		suitablescales, labels and units			all points plotted accurately to \pm half a division		best fit curve	
5a(ii)	Answer to include:	1 mark (Resistance of wire) increases (as the length of wire increases)						
		1 mark Current decreases (as the length of wire increases).						
5a(iii)	0.55 A							
5a(iv)	Repeat (and average)	Repeating an experiment allows and average to be worked out. This reduces the chance of a rogue result changing the results to a different conclusion.						
5b	Answer to include:	1 mark Resistance will be less (than 5.2 2)						
		1 mark	The wire now has shorter length (between X and Y)			or ${ }^{\text {or }}$ Two wires are connec		ected in parallel
6a(i)	0.025 A	$\mathrm{V}=12 \mathrm{~V}$		$\begin{array}{lr} = & R \\ = & 18 \\ = & 480 \end{array}$		$\begin{array}{cc} + & R_{3} \\ + & 120 \end{array}$$\begin{array}{ccc} & \mathrm{R} & \text { (1 mark) } \\ \times \quad 480 & \text { (1 mark) } \\ & & \text { (1 mark) } \end{array}$		$\mathrm{R}=480 \Omega$
6a(ii)	0.075 W				$\begin{aligned} & \quad \mathrm{I}=0.025 \\ & \mathrm{I}^{2} \\ & (0.025)^{2} \quad \mathrm{x} \\ & 0.075 \mathrm{~W} \end{aligned}$		$\mathrm{R}=120 \Omega$	
6b(i)	480Ω	Combining Parallel Resistors:$\begin{aligned} & \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad(1 \text { makk }) \\ & \frac{1}{R_{T}}=\frac{1}{720}+\frac{1}{720} \quad(1 \text { makk }) \\ & \frac{1}{R_{T}}=\frac{2}{720} \\ & R_{T}=360 \Omega \end{aligned}$						
6b(ii)	Answer to include:	1 mark (P 1 mark C			Power will be) the same			
					ent will be the s	same (in the 120Ω restis	istor)	
7a	Working showing: 91000 J	$\mathrm{P}=3.5 \mathrm{~kW}=3500 \mathrm{~W}$			$=\frac{E}{t}$	(1 mark)	$\mathrm{t}=26 \mathrm{~s}$	

		$\begin{aligned} 3500 & =\frac{E}{26} \\ E & =91000 \mathrm{~J} \end{aligned}$
$7 \mathrm{~b}(\mathrm{i})$	83600 J	$\mathrm{E}_{\mathrm{h}}=?$ $\mathrm{C}=4180$ $\mathrm{~m}=0.25 \mathrm{~kg}$ $\Delta \mathrm{~T}=100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}=80^{\circ} \mathrm{C}$ E $=$ c x m x $\Delta \mathrm{T}$ ${ }_{\text {(1 mark) }}$ E $=$ 4180 x 0.25 x 80 ${ }^{\text {(1 mark) }}$ E $=$ 83600 J (1 mark)
7b(ii)	0.0033 kg	
7 b (iii)	One answer from:	Heat energylost to the surroundings. or \quadSome of the heat (energy) is used to heat the dispenser.
8a	Diagram showing:	
8b	783 N	$\begin{array}{rlrlr\|} \hline P=1.74 \times 10^{5} \mathrm{~Pa} & \mathrm{~F}=? & \mathrm{~A}=4.50 \times 10^{-3} \mathrm{~m}^{2} \\ \mathrm{P} & =\frac{\mathrm{F}}{\mathrm{~A}} & \text { (1 mark) } & \\ 1.74 \times 10^{5} & =\frac{\mathrm{F}}{4.50 \times 10^{-3}} & \text { (1 mark) } & \\ \mathrm{F} & =783 \mathrm{~N} & \text { (1 mark) } & \end{array}$
8c(i)	$1.5 \times 10^{5} \mathrm{~Pa}$	
8c(ii)	Answer to include:	1 mark (individual) particles collide with container/walls less frequently (than before) 1 mark (overall) force (on walls) is less 1 mark pressure decreases

