

This marking scheme is for the intended National 5 Physics Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason.
Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same.
The grades awarded by SQA in 2020 and 2021 are in the table below.

Grade Obtained	A	B	C	D	N/A
2020	40.3%	23.4%	22.2%	9.2%	4.8%
2021	43.4%	19.8%	18.1%	10.8%	7.8%

2020 Nat5 Physics Marking Scheme

Question	Answer	Physics Covered					
		Vector Quantity	force	velocity	displacement	acceleration	weight
		Scalar Quantity	mass	speed	distance	time	energy
2	D	Terminal velocity is reached when the weight in the downward direction is balanced in the opposite direction by air resistance／friction					
3	B	$\begin{array}{rlr} \mathrm{F} & =\mathrm{m} & \mathrm{a} \\ 10 & =5.0 \times & \mathrm{a} \\ \mathrm{a} & =2 \mathrm{~ms} \mathrm{~s}^{-2} \end{array}$					
4	B	$\begin{array}{rlc} F & =k & y \\ F & =12 \times 0.030 \\ F & =0.36 \mathrm{~N} \end{array}$					
5	D	区A The vertical velocity increases as gravitational field strength causes acceleration囚 B The horizontal velocity is constant and appears horizontal on v_{n} graph区C The horizontal velocity is constant and appears horizontal on v_{h} graph \checkmark D Horizontal velocity is contant and vertical velocity is increasing． 囚E The horizontal velocity is constant and appears horizontal on v_{h} graph					
6	C	At 540 km altitud $\mathrm{W}=$ ？	graph， W $=$	gravitational $m=78 \mathrm{k}$ $\mathrm{mg}=78 \mathrm{x}$	ld strength $=8.3$ $=647 \mathrm{~N}=650$	$3.3 \mathrm{~N} \mathrm{~kg}^{-1}$	． $3 \mathrm{~N} \mathrm{~kg}^{-1}$
		Statement I－Correct		Statement II－Correct		Statement III－Incorrect	
7	C	The orbital period of a geostationary satellite is 24 hours so satellite stays above the same location on Earth．		The orbital period of a geostationary satellite is 24 hours so satellite stays above the same location on Earth．		Geostationary satellites have a fixed altitude of 36000 km so the satellite stays above same location on Earth	
8	B	$\begin{aligned} 1 \text { light year }=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times 1 \times 365.25 \times 24 \times 60 \times 60=9.5 \times 10^{15} \mathrm{~m} \\ \text { No. of light years }=\frac{2.4 \times 10^{18} \mathrm{~m}}{9.5 \times 10^{15} \mathrm{~m}}=2.5 \times 10^{2} \text { light years } \end{aligned}$					
9	C	 2 calcium lines missing from line spectrum of star 3 helium lines missing from line spectrum of star Both hydrogen lines in line spectrum of star All sodium lines in line spectrum of star					
10	E					$t=5$ minutes $=5 \times 60 \mathrm{~s}$	
11	D	Trace X					
		d．c．signa					
		－negative charges（electrons） flow in one direction only． gives a constant trace on oscilloscope		－the direction of electrons in current changes back and forth at regular intervals －the size of the current varies with time and is not constant		－negative charges（electrons） flow in one direction only． －gives a constant trace on oscilloscope	

12	E	Statement I－Correct	Statement II－Correct	Statement III－Correct
		Resistance is equal to the gradient of the line on an V－A graph． －Resistor X gives steepest gradient on graph so Resistor X has greatest resistance．		$\begin{aligned} & \text { Gradient }=\frac{\Delta \text { voltage }}{\Delta \text { current }} \\ & \text { Gradient }=\frac{1.0-0.0}{4.0-0.0} \\ & \text { Gradient }=\frac{1.0}{4.0} \\ & \text { Gradient }=\mathbf{0 . 2 5 \Omega} \end{aligned}$
13	A	VA This circuit will give readings of current and voltage to calculate $\mathrm{R}=\mathrm{V} / \mathrm{I}$囚B Voltmeter is incorrectly fitted to circuit（voltmeters are linked in parallel）区C Ammeter is incorrectly fitted to circuit（ammeters are linked in series） D Ammeter is giving the current before it splits into either branch \therefore too big区E Ammeter and voltmeter are incorrectly fitted to circuit		
14	B			
15	B	$\begin{array}{cc} \mathrm{E}=9.0 \times 10^{4} \mathrm{~J} & \mathrm{E} \\ & 9.0 \times 10 \\ & \mathrm{~m} \\ & \end{array}$	$\begin{array}{lcll} & \mathrm{m}=? & & \\ = & \mathrm{m} & \mathrm{x} & \\ = & \mathrm{m} & \mathrm{x} & 22 \\ = & 0.04 \mathrm{~kg} & & \\ \hline \end{array}$	$\underset{\text { l }}{\substack{\text { l } \\ \mathrm{l} \times 10^{5}}} \mathrm{l}=22.6 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$
16	D	$\mathrm{P}=$ ？	$\begin{aligned} & \text { rea }=l \times b=0.2 \mathrm{~m} \times 0.10 \mathrm{~m}=0.02 \\ & \mathrm{~F}=28 \mathrm{~N} \\ & P=\frac{F}{A}=\frac{28}{0.02}=1400 \end{aligned}$	$A=0.02 \mathrm{~m}^{2}$
17	E	XA As there is no increase in temperature the air particles do not move faster 囚B Decrease in volume increases pressure leading to air particles hitting walls more often $\boxtimes C$ As there is no decrease in temperature the air particles do not move slower 囚D An increase in temperature for the particles to gain kinetic energy E Decrease in volume increases pressure leading to air particles hitting walls more often		
18	A	Temperature Change in degrees Celsius $=64^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}=42^{\circ} \mathrm{C}$ \therefore Temperature Change in Kelvin $=42 \mathrm{~K}$		
19	A	Frequency 5 water waves in 1 $\mathrm{f}=\frac{\mathrm{N}}{\mathrm{t}}=\frac{5}{10}$	Waves Peri $=\mathbf{0 . 5 ~ H z}$ Frequency＝ $\mathrm{T}=\frac{1}{\mathrm{f}}$	f Waves $\frac{1}{0.5}=\mathbf{2 s}$
20	C	囚A Speed decreases as red light enters a more dense．Medium（glass block）囚B Wavelength decreases as red light enters a more dense medium（glass block） C Both wavelength and speed of light decrease as it enters a more dense medium囚D Wavelength decreases as red light enters a more dense medium（glass block）囚E Wavelength decreases as red light enters a more dense medium（glass block）		

21	C	区A red light bends towards normal when it enters a more dense medium（glass） 囚B red light bends towards normal when it enters a more dense medium（glass） \downarrow C red light has bent towards the normal as the glass block is a more dense medium 囚D The red light bends towards the normal but not touching the normal 区E The beam appears to have reflected not refracted as it enters glass at the normal
22	D	区A X cannot be alpha as X bends towards＋plate and alpha would deflect away囚B X cannot be alpha as X bends towards＋plate and alpha would deflect away囚 Y cannot be alpha as Y would be attracted to－plate but X is undeflected $\nabla \mathrm{D} X(\alpha)$ bends towards－plate，$Z(\beta)$ bends towards＋plate and $Y(\gamma)$ undeflected区E Y cannot be alpha as X would be attracted to the－plate but X is undeflected
23	A	atoms lose electrons and become positively charged lonising describes the process where atoms gain electrons and become negatively charged
24	D	The source releases alpha and gamma radiation but not beta． －piece of paper reduces the emitted radiation \therefore alpha radiation present － 1 cm of aluminium gives same result as piece of paper \therefore beta radiation not present － 5 cm of lead reduces the emitted radiation \therefore gamma radiation present
25	A	$\begin{array}{llrl} \mathrm{D}=? & \mathrm{E}=90 \mu \mathrm{~J}=90 \times 10^{-6} \mathrm{~J} & \mathrm{~m}=2.0 \mathrm{~kg} \\ & \mathrm{D}=\frac{\mathrm{E}}{\mathrm{~m}}=\frac{90 \times 10^{-6}}{2}=45 \times 10^{-6} \mathrm{~Gy}=45 \mu \mathrm{~Gy} & \end{array}$

