

Rast Papers Nat 5 Appsic⁹ 2020 Marking Scheme

This marking scheme is for the intended National 5 Physics Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason. Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same. The grades awarded by SQA in 2020 and 2021 are in the table below.

Grade Obtained	A	В	С	D	N/A
2020	40.3%	23.4%	22.2%	9.2%	4.8%
2021	43.4%	19.8%	18.1%	10.8%	7.8%

2020 Nat5 Physics Marking Scheme

Question	Answer	Physics Covered					
1	^	Vector Quantity for	ce	velocity	displacement	acceleration	weight
1	А	Scalar Quantity ma	ISS	speed	distance	time	energy
2	П	Terminal velocity is reached when the weight in the downward direction is balanced in				ו is balanced in	
<u> </u>		the opposite direction by air resistance/friction					
		F _{un} = 25 N – 15 N = 10 N		m = 5.0) kg		a = ?
3	В			F = m	a		
				10 = 0.0 a - 2 m	X d		
		F = ?		$k = 12 \text{ N m}^{-1}$	v = 0.		m = 0.030 m
				F = k	, V	110111 0.000	m – 0.000 …
4	В			F = 12	x 0.030		
				F = 0.3	6 N		
		A The vertical velocity	/ increa	ases as gravita	tional field str	ength causes	acceleration
		B The horizontal velo	city is c	constant and a	ppears horizo	ntal on v _h grap	ph
5	D	C The horizontal velo	city is c	onstant and a	ppears horizo	ntal on v _h grap	ɔh
		☑D Horizontal velocity	is cont	ant and vertic	al velocity is in	creasing.	
		E The horizontal veloc	city is c	onstant and a	ppears horizo	ntal on v _h grap	bh
		At 540km altitude on gr	aph, gr	ravitational fie	ld strength = ٤	3.3 N kg⁻¹	2 2 1 -1
6	C	W = ?		m = 78 kg		g	= 8.3 N kg⁻⁺
		 	<u>W = n</u>	ng = 78 x 8.3	3 = 647N = 6	50N	
		Statement I - Correc	:t	Statement I	l - Correct	Statement I	II - Incorrect
7	С	The orbital period of a geostati	onary T	he orbital period o	of a geostationary	Geostationary sat	ellites have a fixed
		above the same location on E	arth.	above the same lo	cation on Earth.	stays above same	e location on Earth
		1 light year = 3.0x10 ⁸ m	s ⁻¹ x 1	<365.25x24x60	$0x60 = 9.5x10^{1}$	^{.5} m	
8	В	No of lig	ht vear	$r_{s} = \frac{2.4 \times 10^{2}}{2.4 \times 10^{2}}$	$\frac{18}{18}$ m = 2.5x	10 ² light years	
			III yea	9.5x10	¹⁵ m		1
		Line spectrum from star					
_	С	calcium [2 calcium	lines missing from li	ne spectrum of star
9		helium [3 helium	lines missing from lin	e spectrum of star
		hydrogen [<u> </u>	Both hydr	rogen lines in line spe	ectrum of star
		sodium [All sodiun	n lines in line spectru	m of star
		P = 48 W		V = 12 V	/ · т		I = ?
				P = V			
				48 = 14 T - 1	2 X I ^		
10	E			1 - 47	А	. E sector	
		Q = ?		I = 4 A	+	t = 5 min	utes = 5x60 s
				Q = I			
				$Q = \frac{1}{2}$	x 3x00		
			<u> </u>	Trace	- V		200 7
			-		= 1 mal		cional
11	П	negative charges (electrons)	• the c	direction of electro	ons in current	 negative char 	ges (electrons)
**	U	flow in one direction only.	chan	iges back and forth	n at regular interval	s flow in one di	rection only.
		 gives a constant trace on oscilloscope 	 the s is no 	size of the current v of constant	varies with time an	d egives a consta oscilloscope	int trace on

		Statement I - Correct	Statement II - Correct	Statement III - Correct
12	E	Resistance is equal to the gradient of the line on an V-A graph. • Resistor X gives steepest	4.0 X Y	Gradient = $\frac{\Delta \text{voltage}}{\Delta \text{current}}$ Gradient = $\frac{1.0 - 0.0}{4.0 - 0.0}$
		gradient on graph so Resistor X has greatest resistance.		Gradient = $\frac{1.0}{4.0}$
			current (A)	Gradient = 0.25Ω
13	A	 A This circuit will give read B Voltmeter is incorrectly C Ammeter is incorrectly D Ammeter is giving the curve E Ammeter and voltmeter 	lings of current and voltage to fitted to circuit (voltmeters ar fitted to circuit (ammeters ar urrent before it splits into eith are incorrectly fitted to circu	o calculate R = ^v /I re linked in parallel) e linked in series) her branch ∴ too big it
14	В	T (°C) Change of State Q. Melting R solid O	Change of State S Evaporation T liquid	gas U
		$F = 9.0 \times 10^4 J$	m = ?	$l = 22.6 \times 10^5 \text{J kg}^{-1}$
15	В	E 9.0x10 m	= m x $^{4} = m x 22.$ = 0.04 kg	l 6x10 ⁵
16	D	P = ?	Area = l x b = 0.2m x 0.10m = 0.02 n F = 28 N P = $\frac{F}{A} = \frac{28}{0.02} = 1400 \text{ Pa}$	h ² A = 0.02 m ²
17	E	 A As there is no increase in temperature the air particles do not move faster B Decrease in volume increases pressure leading to air particles hitting walls more often C As there is no decrease in temperature the air particles do not move slower D An increase in temperature for the particles to gain kinetic energy E Decrease in volume increases pressure leading to air particles hitting walls more often 		
18	А	Temperature Change in d	egrees Celsius = 64°C – 22°C =	= 42°C
		C Temperature Change in K	elvin =	= 42K
19	A	5 water waves in 10 $f = \frac{N}{t} = \frac{5}{10}$	$T = \frac{1}{f}$	$\frac{1}{5Hz} = \frac{1}{0.5} = 2s$
20	С	 ☑A Speed decreases as red ☑B Wavelength decreases a ☑C Both wavelength and sp ☑D Wavelength decreases a ☑E Wavelength decreases a 	light enters a more dense. Me s red light enters a more dens eed of light decrease as it ent is red light enters a more den s red light enters a more dens	edium (glass block) se medium (glass block) ers a more dense medium se medium (glass block) se medium (glass block)

21		A red light bends towards normal when it enters a more dense medium (glass)
		B red light bends towards normal when it enters a more dense medium (glass)
	С	☑C red light has bent towards the normal as the glass block is a more dense medium
		D The red light bends towards the normal but not touching the normal
		E The beam appears to have reflected not refracted as it enters glass at the normal
		🗷 A X cannot be alpha as X bends towards + plate and alpha would deflect away
	D	B X cannot be alpha as X bends towards + plate and alpha would deflect away
22		🗷 C Y cannot be alpha as Y would be attracted to – plate but X is undeflected
		\Box D X (α) bends towards – plate, Z (β) bends towards + plate and Y (γ) undeflected
		E Y cannot be alpha as X would be attracted to the – plate but X is undeflected
	A	atoms <i>lose</i> electrons and become <i>positively</i> charged
23		Ionising describes the process where
23		atoms gain electrons and become negatively charged
		The source releases alpha and gamma radiation but not beta.
24	D	 piece of paper reduces the emitted radiation alpha radiation present
24		• 1cm of aluminium gives same result as piece of paper ∴ beta radiation not present
		• 5cm of lead reduces the emitted radiation ∴ gamma radiation present
		D = ? $E = 90 \ \mu J = 90 x 10^{-6} J$ m = 2.0 kg
25	A	$D = \frac{E}{m} = \frac{90 \times 10^{-6}}{2} = 45 \times 10^{-6} \text{ Gy} = 45 \ \mu\text{Gy}$

Question	Answer	Physics Covered
		d = 870m $v = 2.9 \text{ m s}^{-1}$ t = ?
		d = v x t (1 mark)
1a(i)	300s	
20(1)		$870 = 2.9 \times t$ (1 mark)
		t = 300 s (1 mark)
	2.9 m s ⁻¹ EAST	Average speed $= 2.0 \text{ m s}^{-1}$ is a scalar guantity with no direction
1a(ii)	or	Average speed = 2.9 m s is a scalar quality with no direction
	2.9 m s ⁻¹ 090	Average velocity = 2.9 m s ² is a vector quantity when the direction EAST or 090 is added
		a = ? $v = 3.0 \text{ m s}^{-1}$ $u = 0.0 \text{ m s}^{-1}$ $t = 15 \text{ s}$
1b(i)	0.20 m s^{-2}	$a = \frac{v - u}{1 + 1} = \frac{3.0 - 0.0}{1 + 1} = 0.20 \text{ m s}^{-2}$
20(1)	0.20 11 3	t 15 (and)
		(1 mark) (1 mark) (1 mark)
		Area O Area O
		Distance = area under graph Distance = area under graph
1b(ii)	68m	$\frac{10}{2}$ 10 = $\frac{1}{2} \times 15 \times 3.0$ = 15 × 3.0
		= 22.5m = 45m
		time (s) Total Distance = 22.5 + 45 = 67.5m = 68m
		opp 2.6 0.007 0.100
1c	048	$\tan \theta = \frac{1}{\operatorname{adj}} = \frac{1}{2.9} = 0.897 \therefore \theta = 42^{\circ}$
		Bearing = 90° – 42° = 048
2a(i)	To reduce friction	The force of the moving air upwards lifts the vehicle up enough so that there is no
		Triction between the linear air track and the vehicle.
22(!!)	Answer to include:	1 mark time for card to pass through the (light) gate
20(11)	Answer to include.	1 mark time taken for card to reach (light) gate
		1 mark 1 8 m s ⁻²
2b	Answer to include:	1 mark acceleration value is not in the same proportion to the accelerating force
	(gravitational) potential	Energy is stored as gravitational potential energy when it is higher up.
2c	\downarrow	When released the gravitational potential energy ids converted into kinetic energy
	kinetic	as it falls.
		f = ? N = 27 t = 1 minute = 60 s
3a	Working showing	$f = \frac{N}{L} = \frac{27}{CO} = 0.45 \text{ Hz}$
	0.45 Hz	t bU
		P = 95 W $F = ?$ $t = 1200 s$
3b(i)	1.1x10 ⁵ J	
(-)		$P = \frac{1}{t}$ \therefore $95 = \frac{1}{1200}$ \therefore $E = 95 \times 1200 = 1.1 \times 10^3 \text{ J}$
2 h/::)	One encuer from	From will also have been concerned on heat
30(11)	One answer from:	sound
		E _w = 208 J F = ? d = 1.3m
20	160 N	$E_w = F d$ (1 mark)
50	100 N	$208 = F \times 1.3$ (1 mark)
		F = 160 N (1 mark)
4a	Answer to include	A natural satellite of a planet
		dwarf planet
4b	Hydra	For a moon in a fixed orbit, the further the moon from the planet greater the orbital
	Longest orbital period	period. The mass and diameter of the moon are irrelevant.
4c	Answer to include:	gravitational boost from
		1 mark It received a slingshot Jupiter
		L Calapuil J
1	1	

4d(i)	1.20x10 ¹¹ J	$E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}x \ 454 \ x \ (23.0x10^{3})^{2} = 1.20x10^{11} \ J$ (1 mark) (1 mark) (1 mark) (1 mark)
4d(ii)	Answer to include:	1 mark There is no friction air resistance opposing force 1 mark Therefore there is no unbalanced force
4e	4.8x10 ¹² m	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	Answer to include:	1 mark 2 marks 3 marks Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Candidate has demonstrated a involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem.
6a(i)	One answer from:	To $\begin{bmatrix} reduce \\ limit \end{bmatrix}$ the current (in the LED) Also accepted:
6a(ii)	330 Ω	$V_{S} = V_{R} + V_{1} + V_{2} + V_{3}$ $12 = V_{R} + 1.8 + 1.8 + 1.8 (1 mark)$ $V_{R} = 6.6 V$ $V_{R} = 6.6 V$ $V_{R} = I$ $R = ?$ $V_{R} = I$ $R = ?$
6a(iii)	One answer from:	The green and blue LEDs have different The green and blue LEDs have different (than the red LEDs)
6b	Answer to include:	1 mark same brightness 1 mark same voltage across the red LEDs the three branches are connected in parallel, so voltage across them does not change
7a	0.85 V (which is greater than switch on voltage 0.7 V)	$V_{s} = 5.0 V \qquad V_{2} = ? \qquad R_{1} = 16.6 k\Omega = 16600\Omega \qquad R_{2} = 3.4 k\Omega = 3400\Omega$ $V_{2} = \frac{R_{2}}{R_{1} + R_{2}} x \qquad V_{s}$ $V_{2} = \frac{3400}{16600 + 3400} x \qquad 5.0$ $V_{2} = 0.85 V$
7b(i)	The control circuit operates at 5 V the floodlight at 230 V	The purpose of a relay switch is that the switch circuit has a much lower voltage than the circuit it is switching on. This reduces the risk of a serious electric shock when switching on the machine on remotely.
7b(ii)	2.5 A	P = 575 W $I = ?$ $V = 230 V$ $P = I$ $575 = I$ $X = 230$ $(1 mark)$ $I = 2.5 A$ $(1 mark)$
7b(iii)	ЗА	Devices with a Power Rating of 720 W or below have a 3A fuse fitted. Devices with a Power Rating above 720 W have a 13A fuse fitted.

		E _h = ? $c = 810 \text{ J kg}^{-1} \text{ °C}^{-1}$ m = 2.5 kg $\Delta T = 250^{\circ}\text{C} - 22^{\circ}\text{C} = 228$
8a	4.6x10 ⁵ J	$E = c x m x \Delta T (1 \text{ mark})$
		E = 810 x 2.5 x 228 (1 mark)
		$E = 4.6 \times 10^5 $ J (1 mark)
8b(i)	58.0 Ω	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \qquad (1 \text{ mark})$ $\frac{1}{R_{T}} = \frac{1}{R_{T}} + \frac{1}{R_{T}} + \frac{1}{R_{T}} \qquad (1 \text{ mark})$
		$R_{T} = \frac{1}{174} = \frac{3}{174}$
		$R_T = 58.0 \Omega \qquad (1 \text{ mark})$
8b(ii)	910 W	P = ? $P = \frac{V^2}{R} = \frac{(230)^2}{58.0} = \frac{52900}{58.0} = 910 W$ (1 mark) (1 mark) (1 mark)
		1 mark greater time
8c	Answer to include:	1 mark specific heat capacity of oil is greater than clay brick
		Temperature: Constant $p_1 = 2.5 \times 10^5$ Pa $V_1 = 960$ litres $p_2 = ? (2.0 \times 10^7$ Pa) $V_2 = 12$ litres
		(1 mark) $p_1 V_1 = p_2 V_2$
9a	Working showing 2.0x10 ⁷ Pa	$2.5 \times 10^5 \times 960 = p_2 \times 12$
		$(1 \text{ mark}) \qquad \begin{array}{c} 2.5 \times 10^5 \times 960 \\ 12 \end{array} = p_2$
		$2.0 \times 10^7 \text{Pa} = p_2$
	280 K	Volume: Constant $p_1 = 2.0 \times 10^7$ Pa $T_1 = 21^\circ C = 294$ K $p_2 = 1.9 \times 10^7$ Pa $T_2 = ?$
		$(1 \text{ mark}) \frac{p_1}{T_1} = \frac{p_2}{T_2}$
9b(i)		(1 mark) $\frac{2.0 \times 10^7}{294} = \frac{1.9 \times 10^7}{T_2}$
		$T_2 = \frac{1.9 \times 10^7 \times 294}{2.0 \times 10^7}$
		(1 mark) $T_2 = 280 \text{ K}$
9b(ii)	Answer to include:	1 mark (The decrease in temperature) decreases the kinetic energy of the gas particles/the particles move slower
		1 mark The particles hit the walls of the container less often/frequently
		1 mark The particles hit the walls of the container with less force
10	Answer to include:	1 mark 2 marks 3 marks Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to situation, showing that they have understood the problem. Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Candidate has demonstrated a candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.

11a(i)	Amplitude labelled as shown in diagram	wavelength amplitude
11a(ii)	wavelength labelled as shown in diagram	
11b	1.4m	$v = 340 \text{ m s}^{-1} \qquad f = 250 \text{ Hz} \qquad \lambda = ?$ $v = f \qquad x \qquad \lambda \qquad (1 \text{ mark})$ $340 = 250 \qquad x \qquad \lambda \qquad (1 \text{ mark})$ $\lambda = 1.4 \text{ m} \qquad (1 \text{ mark})$
		<u>1 mark</u> <u>1 mark</u> <u>1 mark</u>
11c(i)	Graph showing:	Suitable scales,All points plotted accuratelyBest fit curvelabels and unitsto ± half a divisionBest fit curve
11c(ii)	800 Hz	Must be consistent with the line the candidate has drawn.If the candidate has not shown a curve or line in (c)(i) this mark cannot be given.If the candidate has used a non- linear scale in (c)(i) this mark cannot be given.
11c(iii)	Repeat measurement and average	Also accepted: Increase the range of lengths Increase the number of different lengths.
12a	Activity decreases too much with the time (to still be suitable)	With a half-life of 22 hours, at least 7 half-lives will have passed in the week after thesolution was prepared. The solution would have less than 1% remaining. $100\% \rightarrow 50\% \rightarrow 25\% \rightarrow 12.5\% \rightarrow 6.25\% \rightarrow 3.13\% \rightarrow 1.56\% \rightarrow 0.78\%$ Day 0Day 1Day 2Day 3Day 4Day 5Day 6Day 7
12b(i)	Any suitable source	
12b(ii)	330 decays	A = 5.5 Bq A = $\frac{N}{t}$ (1 mark) 5.5 = $\frac{N}{60}$ (1 mark) N = 330 decays (1 mark)
12b(iii)	One answer from:	Move the Geiger-Müller tube Place shielding closer to the tissue sample around apparatus
13a(i)	fission	Induced Nuclear Fission is the process where neutrons are absorbed by a nucleus causing it to split into two smaller nuclei and some more neutrons are sent out to split further nuclei in a chain reaction.
13a(ii)	Answer to include:	1 mark Neutrons produced in 1 st reaction can go on to cause further reactions split more nuclei 1 mark This process repeats or a chain reaction occurs
13b	96 years	$1 \longrightarrow \frac{1}{2} \longrightarrow \frac{1}{4} \longrightarrow \frac{1}{8}$ 3 half-lives to decrease activity to $\frac{1}{8}$ of original value 1 half-life = 32 years \therefore 3 half-lives = 3x32 years = 96 years
13c(i)	1x10 ⁻⁵ Sv	$ \begin{array}{c} \begin{array}{c} Total \\ Equivalent Dose \end{array} = \begin{array}{c} Equivalent Dose from \\ Slow Neutrons \end{array} + \begin{array}{c} Equivalent Dose for \\ Gamma Radiation \end{array} \\ = \begin{array}{c} D \ W_R \end{array} + \begin{array}{c} D \ W_R \end{array} \\ = \begin{array}{c} (2.2x10^{-6} \ x \ 3) \end{array} + \begin{array}{c} (3.4x10^{-6} \ x \ 1) \end{array} \\ = \begin{array}{c} 6.6x10^{-6} \ Sv \end{array} \\ = \begin{array}{c} 1.0x10^{-5} \ Sv \end{array} $
13c(ii)	2000 Shifts	$N = \frac{20 \times 10^{-3}}{1.0 \times 10^{-5}}$ $N = 2000 \text{ Shifts}$