

Grade Awarded	Mark Required		\% candidates achieving grade
	1_{125}	$\%$	
A	$63+$	63%	34.9%
B	$51+$	51%	20.9%
C	$40+$	40%	18.2%
D	$28+$	28%	14.5%
No award	<28	$<28 \%$	11.5%

Section:	Multiple Choice	Extended Answer	Assignment		
Average Mark:	14.7	125	38.4	175	No Assignment in 2022

2022 Nat5 Physics Marking Scheme

Question	Answer	Physics Covered				
1	E	Vector Quantity force	velocity		acceleration	
		Scalar Quantity energy			time	
2	C	区A Toy car must have velocity above zero at point P 囚 B Toy car must have higher velocity at point Q than it had at point P $\boxtimes C$ Average speed of $1 \mathrm{~m} \mathrm{~s}^{-1}$ and $3 \mathrm{~m} \mathrm{~s}^{-1}$ is $2 \mathrm{~m} \mathrm{~s}^{-1}$ 囚D Average speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$ and $3 \mathrm{~m} \mathrm{~s}^{-1}$ would be $2.5 \mathrm{~m} \mathrm{~s}^{-1}$ 区E Average speed must be between $2 \mathrm{~m} \mathrm{~s}^{-1}$ and $3 \mathrm{~m} \mathrm{~s}^{-1}$				
3	D	$v\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad 10-$				
		Area（1）	Area（2）		Area 3	
		$\begin{aligned} \text { Distance } & =\text { area under graph } \\ & =\frac{1}{2} \times 8 \times 6 \\ & =24 \mathrm{~m} \end{aligned}$	$\begin{aligned} \text { Distance } & =\text { area under graph } \\ & =8 \times 4 \\ & =32 \mathrm{~m} \end{aligned}$		$\begin{aligned} \text { Distance } & =\text { area under graph } \\ & =12 \times 10 \\ & =120 \mathrm{~m} \end{aligned}$	
		Total Distance $=24 \mathrm{~m}+32 \mathrm{~m}+120 \mathrm{~m}=176 \mathrm{~m}$				
4	B	The rocket pushes down on the water and the water provides an equal but opposite reaction force due to．Newton＇s $3^{\text {rd }}$ Law．				
		Gravitational Potential Energy at 4.0 m		Kinetic Energy at 4.0		
5	B	$\begin{array}{rl} E_{p}=? & m=0.25 \mathrm{~kg} \\ & \mathrm{~g}=9.8 . \mathrm{Nkg}^{-1} \end{array} \mathrm{~h}=6.0-4.0=2.0 \mathrm{~m}$		Kinetic energy at 4.0 m is gained from conversion of potential energy from 6.0 m to 4.0 m ．$\mathrm{E}_{\mathrm{k}}=4.9 \mathrm{~J}$		
	B	Statement I Incorrect There is gravity in space and it is dependent on the distance of the object from planet／moon	Statement II－Correct Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness．		Statement III－Incorrect	
6					Astronauts fall to acceleration as siving the feeling Acceleration $=u$	th at same spacecraft eightlessness． nced forces
7	C	diameter of galaxy＞radius of orbit of Moon			＞radius of Earth	
8	A	∇A Period of orbits for X, Y and Z increase in order．Z has a period of orbit of 24 hours囚 B if Z if geostationary then its period of orbit must be 24 hours． 区C X and Y are closer to Earth than Z so must have period of orbits less than 24 hours区D X and Y are closer to Earth than Z so must have period of orbits less than 24 hours区E if Z if geostationary then its period of orbit must be 24 hours．				
9	A	$\nabla A R+S$ would slow spacecraft as force in in the opposite direction to direction of travel囚B Q + S rockets would cancel each other out and would not change the speed区C P＋Q would increase the speed of spacecraft in same direction of travel QD P＋R rockets would cancel each other out and would not change the speed WE P＋Q＋R＋S rockets would cancel each other out and would not change the speed				

7c(i)		Diodes and LEDs must have the correct orientation if they are to work in a Circuit. The triangular shape points to the negative end of the power supply.					
7c(ii)	Answer to include:		1 mark Voltage 1 mark Transist	switc	variable	sistor incre	switches on
7c(iii)	One answer from:	To $\left[\begin{array}{c}\text { adjust } \\ \text { control }\end{array}\right]$	the moisture level at which the			$\left\{\begin{array}{l}\text { dehumidifi } \\ \text { transistor } \\ \text { LED } \\ \text { fan }\end{array}\right.$	
8a	7.6 A		$\begin{aligned} \mathrm{P} & =\mathrm{I} \\ 1750 & =\mathrm{I} \\ \mathrm{I} & =7.6 \end{aligned}$	$\mathrm{I}=\text { ? }$ x	$\begin{gathered} V \\ 230 \end{gathered}$	(1 mark) (1 mark) (1 mark)	$\mathrm{V}=230 \mathrm{~V}$
8b(i)	$237{ }^{\circ} \mathrm{C}$	$\begin{array}{cc} \mathrm{E}_{\mathrm{h}}=126000 \mathrm{~J} & \\ \mathrm{E} & = \\ 126000 & = \\ \Delta \mathrm{T} & = \\ & \text { Final } \end{array}$	$\mathrm{c}=902 \mathrm{~J} \mathrm{k}$ C 902 $215^{\circ} \mathrm{C}$ perature $=$ Initia	${ }^{\circ} \mathrm{C}^{-1}$	$\begin{gathered} \mathrm{m} \\ 0.650 \\ \text { rature + } \end{gathered}$	$\begin{gathered} m=0.650 \mathrm{~kg} \\ x \\ x \\ \\ \Delta T=22^{\circ} \mathrm{C}+2 \end{gathered}$	$\Delta \mathrm{T}=$? ${ }^{1}$ mark) $\Delta \mathrm{T}$ ${ }^{(1 \mathrm{mark})}$ $5^{\circ} \mathrm{C}=237^{\circ} \mathrm{C}$
8b(ii)	One answer from:	Heat (energy) is lost to the				surroundings rest of iron clothes	
9a	One of the 3 methods shown:	$\frac{p}{\mathrm{~T}}=\frac{121 \times 10^{3}}{323}=375$	$\frac{p}{\mathrm{~T}}=\frac{124 \times 10^{3}}{333}=372$		$\frac{p}{\mathrm{~T}}=\frac{128 \times 10^{3}}{343}=373$		$\frac{p}{T}=\frac{132 \times 10^{3}}{353}=374$
		1 mark for a statement of relationship: $\quad \frac{p}{T}=$ constant or					
		Alternative Method 1:			Alternative Method 2: Graphical Method		
		Use of $\frac{p_{1}}{\mathrm{~T}_{1}}=\frac{p_{2}}{\mathrm{~T}_{2}}$ to verify relationship			Graph drawn on graph paper with		
		1 mark: all four sets of data (min 3 calculations)			1 mark: Suitable scales, labels and units		
		1 mark: all calculations correct			1 mark: All points plotted accurately		
		1 mark: Relationship stated and supported			1 mark: relationship stated		
9b	138kPa - 142kPa	Temperature (${ }^{\circ} \mathrm{C}$)	Temperature (K)	Pressure (kPa)		Difference	Estimate (kPa)
		50	323	121		3	-
		60	333	124		4	-
		70	343	128		4	-
		80	353	132		(4)	-
		90	363	-		(4)	136
		100	373	-		(4)	140
9c	One answer from:	Repeat the experiment	Add more water (in the beaker)	Have more of the flask in the water			Increase the range (of temperatures)
		Stir the water	\qquad			Take readings at more (different) temperatures within the range	

