

Nat 5 Nat 5 Nat 5 Nysics 2023 Marking Scheme

Grade	Mark R	equired	% condidated cabinaina anada
Awarded	/100	%	% candidates achieving grade
Α	65+	65%	34.7%
В	52+	52%	19.8%
С	40+	40%	16.4%
D	27+	27%	15.5%
No award	<27	<27%	13.6%

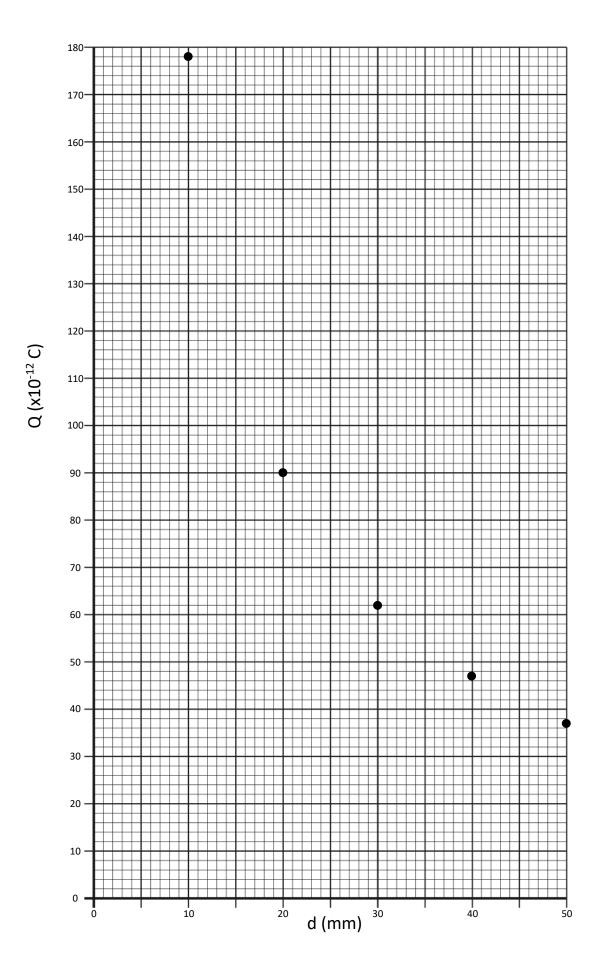
Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	14.5 /25	38.8 /75	No Assignment in 2023

2023 Nat5 Physics Marking Scheme

Question	Answer				Physics	Covered					
			Х			Υ		Z			
1	D	Vectors				force			acceleration		
1	D			gnitude and direc	tion Force i	s a vector quant	ity	Acceleratit	on is a vector qu	uantity	
		wh	ile scalars only	have magnitude	with mag	nitude and dired	ction.	with mag	nitude and dire	ction.	
		≥ A t ₁ +	t ₂ does not r	measure the tir	me taken for t	he card to pas	s throu	gh light g	ate Q	ļ	
		≥ B t ₁ +	t ₂ does not r	measure the tir	ne taken for tl	he card to pas	s throu	gh light g	ate Q	ļ	
2	D	⊠ C this	s would meas	ure the instant	aneous speed	through light	gate P	not light	gate Q	ļ	
		☑D thi	s measures th	ne instantaneo	us speed throເ	ugh light gate	Q			ļ	
		⊠ E this	does not me	easure the insta	anteous speed	at any pointy	in the	experime	nt		
				8.0						ļ	
										ļ	
				6.0 4.0						ļ	
				D 4.0 ←				9		ļ	
				ee	_			_ !		ļ	
				S 2.0 -	D			❸		ļ	
				0	i			<u> </u>		ļ	
3	С			Ö	2.0	4.0	6.0	8.0		ļ	
						time (s)					
			Are	ea ①	Are	a 2		Area	6		
			Distance = area		Distance = area		Distan	ce = area ui		ļ	
			= 2.0	x 4.0	$=\frac{1}{2}X$	6.0 x 2.0		= 6.0 x 4	1.0	ļ	
			= 8m		= 6m			= 24m		ļ	
				To	tal Distance =	8 + 6= 24m = 3	38m			ļ	
		E _w = ?			F = 6.0)N			d = 3.0m		
	D			Е	_w = F	d					
4							_				
•				E	$_{\rm w} = 6.0$	x 3.0	J				
				E	w = 18 J						
			Kinetic er	nergy at 2.0 r	n s ⁻¹	Kir	netic e	nergy at	6.0 m s ⁻¹		
		E _k = ?		4.0 kg v		E _k = ?			v = 6.0 n	n s ⁻¹	
				x m x	v^2			x m			
	В		-				-				
5				x 4.0 x					$(6.0)^2$		
			$E_k = \frac{1}{2}$	x 4.0 x	4.0	E _k	$=\frac{1}{2}$	x 4.0	x 36		
			$E_k = 8.0$	J		E_k	= 72.	0 J			
		Increa	se in kinetic	energy = 72	= L 0.8 – L 0.	64 J					
		T = ?		- ·	$\alpha = 0.2$				d = 1 A	را ا	
					J	-			·	-	
		T ² =		280 ²							
		 									
6	D										
										ļ	
					1.1.	n					
				t orbiting a sta					ا المستحدة الما	ا	
-	^			bject which or					as a small pl	anet	
/	Α			net orbiting aro all of matter. O							
				of matter unde					radiation		
		عاد علما	i laige ball (or matter unde	i going nuclea	ו ומאטוו בווווננ	יייק ויקוו	t and Livi	adiatiOH		

		Unwards force = 2200N							
		Downwards force = $mg = 350kg \times 3.7 \text{ N } kg^{-1} = 1295 \text{ N}$							
0	D								
8	D	Unbalanced force = 2200N – 1295N = 905N upwards							
		As space vehicle is decending when rockets fire then the vehicle will still decend to the							
		surface but there is a decrease in speed as there is a unbalanced force upwards.							
		⊠ A A negative particle P will deflect away from a negatively charged plate R							
		☑B If particle P had no charge it would pass through undeflected through electric field							
9	E	☑C If particle P had no charge it would pass through undeflected through electric field							
		☑D A positive particle P will deflect away from a positively charged plate R							
		☑E A positive particle P will bend towards a negatively charged plate R							
		■ A Negative charges (electrons) move in both a.c. and d.c. current							
10	С	☑B In a.c. current, direction of current reverses constantly back and forth							
10	C	☑C In a.c. current, charges (electrons) reverse intervals at regular interval ☑D Only negative charges (electons) move in a current in both a.c. and d.c. current							
		☑E The quantity of current rises and falls during a.c. current							
		Voltage across resistor R = 5.0V – 2.2V = 2.8V							
11	D	Current in Resistor R = 10.0 mA = 0.0100 A							
		$R = \frac{V}{V} = \frac{2.8}{2.0000} = 280 \Omega$							
		$R = \frac{V}{I} = \frac{2.8}{0.0100} = 280 \Omega$ $V_s = 24 V \qquad \qquad V_2 = ? \qquad \qquad R_1 = 2.4 k\Omega \qquad \qquad R_2 = 1.2 k\Omega$							
		$V_2 = \frac{R_2}{R_1 + R_2} \times V_s$							
12	Α	1.2							
		$V_2 = \frac{1.2}{2.4 + 1.2} \times 24$							
		V							
		$V_2 = 8 V$ A Variable resistor is at bottom of circuit so motor will switch on when light is high.							
		☑B circuit contains thermistor which would make the circuit dependent on temperature							
13	С	☑C Variable resistor is at top of circuit and circuit contains LDR to switch on motor on low light							
		☑D circuit contains thermistor which would make the circuit dependent on temperature not light ☑E circuit contains thermistor which would make the circuit dependent on temperature not light							
		P = 250 W $E = ?$ $t = 2 hours = 2x60x60 s$							
14	Е								
'	_	$P = \frac{E}{t}$: $250 = \frac{E}{2x60x60}$: $E = 250 \times 2x60x60 = 1860000 J$							
		From graph: When Power P = 1 W then Resistance R = 4 Ω							
4 -		$P = \frac{V^2}{R} : 1 = \frac{V^2}{4} : V^2 = 4$							
15	С	$P = \frac{1}{R} \therefore I = \frac{1}{4} \therefore V^2 = 4$							
		∴ V = 2 V							
		Statement I - Correct Statement II - Correct Statement III - Incorrect							
16	С	The mass of the copper The initial and final temperatures The power supply does not give the							
10		block gives the mass in are needed to to calculate ΔT for energy supplied. Joulemeter provides							
		the equation $E_h = cm\Delta T$ the equation $E_h = cm\Delta T$ E_h for the equation $E_h = cm\Delta T$ $E = ?$ $m = 3.5 \text{ kg}$ $l = 3.34 \times 10^5 \text{ J kg}^{-1}$							
		$E = ?$ $m = 3.5 \text{ kg}$ $l = 3.34 \times 10^5 \text{ J kg}^{-1}$ $E = m \times l$							
17	В	$E = 3.5 \times 3.34 \times 10^5$							
		$E = 1.2 \times 10^{6. \text{ J}}$							
		P = 2.0x10 ⁸ Pa							
18	В	$P = \frac{F}{A}$							
	1	I A							

		2	$x10^8 = \frac{5000}{A}$	_				
			A = 2.5x10					
		☑A Pressure & temperature are o ☑B Pressure & temperature are o						
19	Α	⊠ C The volume is constant in the		ma m pressure ten	iperature Law carearations			
		☑D Temperatures used in <i>pressui</i>	re-temperature L	aw calculations are	e measured in Kelvin			
		区 E Temperatures used in <i>pressur</i>						
		$p_1 = 5.0 \times 10^5$	Pa $V_1 = 2.2$	m^3 $T_1 = 27^{\circ}C$	C = 320 K			
		$p_2 = 5.5 \times 10^5$	Pa $V_2 = ?$	$T_2 = 54^{\circ}C$	C = 370 K			
		$\frac{p_1 V_1}{T_1} = cc$	onstant = $\frac{5.0}{}$	0x10 ⁵ x 2.2 320	= 3437.5			
20	С	$\frac{p_2 V_2}{T_2} = cc$	onstant = $\frac{5.!}{}$	$\frac{5 \times 10^5 \times V_2}{370}$	= 3437.5			
				., 3	437.5 x 370			
				V ₂ = —	437.5 x 370 5.5x10 ⁵			
				V ₂ =	2.3 m ³			
		Amplitude			requency			
21	В	0.4		Wavelength = $^{12m}/_2$ = 6m				
		Amplitude = $\frac{0.4}{2}$ =	0.2m	$f = \frac{v}{\lambda}$	$=\frac{3.0}{6}=0.5$ Hz			
		■A wavelength should be same be a same be	oforo and after h	70	0			
		■B ends of waves should curve as			gap in barrier.			
22	Ε	区 boths sides of diffracted waves should be curved after the barrier						
		☑D this answer is clearly nonsense						
		☑E wavelength the same after ba						
		☑A Ray P has bent away from the		-				
23	Α	■B Ray Q has not changed direction and has continued in a straight line from the glass■C Ray R is on wrong side of the normal						
23		☑D Ray S is on wrong side of the normal						
		☑E Ray T is on wrong side of the r						
24	Ε	2.4x10 ⁴ Bq \therefore 1 s = 2.4x10 ⁴ d	ecays : 15	$x60 s = 2.4x10^4 d$	ecays x15x60 = 2.2x10 ⁷			
		Statement I - Incorrect	Statement	t II - Correct	Statement III - Incorrect			
25	В	Nuclear fission is when a	•	ot temperatures	Nuclear fusion takes place			
23	D	large nucleus splits into	•	ion to take place,	only at <i>high</i> temperatures			
		smaller nuclei	containment of	plasma is an issue	, ,			


Question	Answer	Physics Covered							
		Horizontal displacement = 74m – 11m = 63m (WEST or 270)							
		Vertical displacement = 38m – 14m = 24m (North or 000)							
		$x = \sqrt{(24)^2 + (63)^2}$							
1a(i)	67 km	$x = \sqrt{(21)^{3} + (33)^{3}}$ $x = \sqrt{576 + 3969}$							
		$\begin{array}{c} x = \sqrt{370 + 3909} \\ 24m & x = \sqrt{4545} \end{array}$							
		$ \begin{array}{c} x = \sqrt{4545} \\ x = 67 \text{ km} \end{array} $							
		1							
		$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{63}{24} = 2.625 \therefore \theta = 69^{\circ}$							
1a(ii)	291	1							
		Bearing = 360° - 69° = 291							
		S = 67 m $\bar{\upsilon}$ = ? $t = 31 s$							
	4	$S = \bar{v}$ t (1 mark)							
1b(i)	2.2 m s ⁻¹ at bearing 291	$67 = \bar{v} \times 31 \qquad (1 \text{mark})$							
		$\bar{v} = 2.2 \text{ m s}^{-1}$ (1 mark)							
	1 mark	The distance travelled is greater than the displacement as in both the vertical and horizontal							
	distance is greater	directions.							
1 h /::\	than displacement	Direction Displacement Distance							
1b(ii)	1 mark	Horizontal (West – East) 74m – 11m = 63m 74m + 11m = 85m Vertical (North – South) 38m – 14m = 24m 38m + 14m = 52m							
	same time taken	Because the total distance and the displacement take place over the same time period, the							
	Same time taken	average velocity is less because the displacement is less before being divided by the time taken.							
		$E_p = ?$ $m = 0.0025 \text{ kg}$ $g = 9.6 \text{ N kg}^{-1}$ $h = 7.5 \text{ m}$							
	Manting abouting	$E_p = m$ g h (1 mark)							
1c(i)	Working showing 0.18J	F = 0.003F × 0.9 × 7.F (1 mod)							
, ,		$E_p = 0.0025 \times 9.8 \times 7.5 \text{ (1 mark)}$							
		$E_p = 0.18 J$							
		$E_k = 0.18 \text{ J}$ $m = 0.0025 \text{ kg}$ $v = ?$							
		$E_k = \frac{1}{2} \qquad m \qquad v^2 \qquad (1 mark)$							
		$E_k = \frac{1}{2} \qquad \qquad m \qquad \qquad v^2 \qquad \qquad (1 mark)$							
1.0(::)	12 m c-1	1							
1c(ii)	12 m s ⁻¹	$0.18 = \frac{1}{2} \times 0.0025 \times v^2$ (1 mark)							
		$v^2 = \sqrt{144}$							
		$V = 12 \text{ m s}^{-1}$ (1 mark)							
1 (:::)	One answer from:	Energy lost (as heat) due to friction							
1c(iii)	One answer from.	Energy lost (as heat) due to air resistance							
	$\overline{}$								
		A suitable curved path where the ball does not increase in height.							
2a	\	The stone will have fall vertically faster the further it falls due to gravity							
		The horizontal velocity will remain the same							
	<u> </u>								
		$a = 9.8 \text{ m s}^{-2}$ $v = ?$ $u = 0 \text{ m s}^{-1}$ $t = 0.53 \text{ s}$							
		$a = \begin{array}{c} v - u \\ t \end{array} $							
		ί							
2b(i)	5.2 m s ⁻¹	9.8 = v - 0 (1 mark)							
(.,	3.2 111 3	0.53							
		$9.8 \times 0.53 = v - 0$							
		5.2 m s ⁻¹ = ν (1 mark)							
		v (m s ⁻¹),							
		5.2 1st Mark 2nd Mark							
2b(ii)	Graph showing:	Straight line Graph ends at Positive gradient (0.53, 5.2)							
		Starting at origin							
		0.53 t (s) Starting at Origin							

		Height dropped			0 - 1	1 mark)	
2b(iii)	1.4 m		=	_		1 mark)	
			=			1 mark)	
		$I_{un} = 54 N - 22 N = 32$	' N F		n = 74 kg	a = ?	
2c(i)	0.43 m s ⁻²		г 32	= m = 74	a x a		
					x a 43 m s ⁻²		
	Reduces friction	he cyclist take sthe full a	ir resista			nefits from less air	
2c(ii)	or air resistance	esistance as a result.	11 1031314	mice wille	the rider bennia be	ients from less an	
	Of all Tesistatice	1 mark Astra 1KR					
3a	Answer to include:	it is a		it has	an orbital	it is at an orbital	
Ju	7 mower to merade.	1 mark geostationary s	atellite	nr .	٥r	ltitude of 36 000 km	
		V = ?	r	n = 3.5kg		g = 7.7 N kg ⁻¹	
		W =	m	Х	g	(1 mark)	
3b	27N	W =	3.5	Х		(1 mark)	
	<u> </u>	W =	27	IN .		(1 mark)	
	Answer is Greater then 101 minutes	Satellite Orbital Altitu UKube-1 825	ıde (km)		Orbital Period 101 minutes		
3c	and	Satellite 1200)	Longer thai	n 101minutes & shorte	r than 676 minutes	
	Less than 676 minutes	Kosmos2460 1910	0		676 minutes		
		1 mark	2 ו	marks	3 m	narks	
	Open ended question:	Candidate has demonstrated a limited understanding of the physics involved. They		as demonstrated a	involved. They show a good cor	good understanding of the physics nprehension of the physics of the	
4		make some statement(s) that are relevant to the situation, showing that they have statement(s) that are relevant to the situation, showing that they have					
		understood at least a little of the physics within the problem.	situation, sho	wing that they have od the problem.	respond to the problem. The answ	er does not need to be 'excellent' or didate to gain full marks.	
_		not affected no	(distorti	on from)	no light	can use telescope	
5a	One answer from:	by weather	atmosp	-	pollution	during the day	
		hydrogen			All hydrogen lines in	line spectra from star	
	0.4	helium Some helium lines missing from star					
5b	Hydrogen	mercury Some mercury lines missing from star					
	Calcium (both required for 1 mark)	sodium All calcium lines in line spectra from star Some sodium lines missing from star					
		star			Joine Jourum mies i	missing from star	
		<u> </u>		 ••••			
	unorlina ab accia	d = v	Х		t	(1 mark)	
5c	working showing	$d = 3.0x10^8$	х	343 x 3	65.25 x 24 x 60 x	60 (1 mark)	
	3.2x10 ¹⁸ m	$d = 3.2 \times 10^{18}$					
				-11 20	CO - 24O - COO		
		otal Resistance when Sw	itch S ₁ is	ciosea = 36 I = ?		$R = 60 \Omega$	
		′ = 12 V	V =		R (1 mark)	K = 60 22	
6a	0.20 A						
			12 =	I x 6	50 (1 mark)		
			I =	0.20 A	(1 mark)		
		Combine 2 parall	el resisto	ors	Combine with	series resistor	
		1 _ 1 _ 1	(1 ma				
		$R_T = R_1 = R_2$; (± m	,			
		1 - 1 + 1	— (1 ma	ark)	$R_T = R_1$	+ R ₂	
6b(i)	3.2 Ω	$\frac{1}{R_T} = \frac{1}{36} + \frac{1}{36}$) (± me	,		+ 36 (1 mark)	
		1 2			$R_T = 42 \Omega$	(1 mark)	
		${R_T} = {36}$					
		$R_T = 18 \Omega$					
l							

Taylong Tay	6b(ii)	Answer to include:	1 mark (Ammeter reading will be) gre 1 mark Total circuit resistance will be					_			
Ta(i) Graph showing: Suitable scales, Ialipoints plotted accurately to ± half a division Best fit curve			1 mark	ark	1		~ 0 1000	1 mark			
Any two from: (1 mark each) Repeat measurements and average totelerify tot	7a(i)	Graph showing:	Suitable scales		All points plotted accurately						
The	7a(ii)	74x10 ⁻¹² C									
$8a(i) = 2120 \text{J} \qquad \qquad$	7b	I									
8a(i)				-		=					
$8a(ii) \begin{array}{c} E = 532 \times x 1.90x10^3 \times 210 \text{(t.mark)} \\ E = 2120 \text{(t.mark)} \\ \end{array}$ $8a(iii) \begin{array}{c} \text{Heat (energy) lost to} \\ \text{the surroundings.} \\ \end{array}$ $8b \text{Answer to include:} \begin{array}{c} \frac{1 \text{ mark}}{\text{different (specific) heat capacity}} \frac{1 \text{ mark}}{\text{different mass}} \\ \end{array}$ $9a(ii) \begin{array}{c} \text{Force per unit area} \\ \text{or Force per mit} \\ \end{array}$ $pressure is calcuated from equation P = \frac{\text{Force}}{\text{Name}} \text{and is defined as Force per unit area} \\ p_1 = 101 \text{ kPa} V_1 = 2.3x10^3 \text{ m}^3 \\ p_2 = 92 \text{ kPa} V_2 = ? \\ \text{(1 mark)} p_1 V_1 = p_2 V_2 \\ \end{array} 9a(iii) \begin{array}{c} \text{The (gas) particles} \\ \text{collide with the walls} \\ \text{(of the crisp packet)}. \end{array} Pressure is caused by the particles inside a gas colliding with the walls of they container the gas in is. \\ \text{The feature te gas particles collide with the walls of the container the higher the pressure.} \\ \overrightarrow{H} = 6.0 \mu\text{SV} \overrightarrow{H} = \frac{H}{t} \text{(1 mark)} \\ \overrightarrow{H} = \frac{10 \text{ mark}}{t} \text{(2.6 m}} \\ \overrightarrow{H} = \frac{10 \text{ mark}}{t} \text{(2.6 m}} \\ \overrightarrow{H} = \frac{10 \text{ mark}}{t} \text{(2.6 m}} \\ \overrightarrow{H} = \frac{10 \text{ mark}}{t} \text{(3.6 m)} \\ \overrightarrow{H} = \frac{10 \text{ mark}}{t} \text{(3.6 m)} \\ \overrightarrow{H} = $	8a(i)	2120 I	E =	С			X	ΔΤ	(1 mark)		
8a(ii) Heat (energy) lost to the surroundings. Heat loss must be indentified as being lost to the surroundings 8b Answer to include:	Su(i)	21203			Х	1.90x10 ⁻²	X	210			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8a(ii)				s being lost to	the surroundi	ngs		(I mark)		
9a(ii) Force per unit area or force per m² Pressure is calcuated from equation $P = force / N_{New}$ and is defined as Force per unit area $p_1 = 101 \text{ kPa}$ $V_1 = 2.3 \times 10^{-3} \text{ m}^3$ $p_2 = 92 \text{ kPa}$ $V_2 = ?$ 9a(iii) $2.5 \times 10^{-3} \text{ m}^3$ (1 mark) $101 \times 2.3 \times 10^{-3} = 92 \times V_2$ 9a(iii) $\frac{101 \times 2.3 \times 10^{-3}}{92} = V_2$ 101 × 2.3 × 10 ⁻³ $\frac{1}{92} = V_2$ 102 × 2.5 × 10 ⁻³ m³ = V_2 103 × 2.5 × 10 ⁻³ m³ = V_2 104 × 2.5 × 10 ⁻³ m³ = V_2 105 × 10 ⁻³ m³ = V_2 106 × 10 ⁻³ m²	8b		1:55			1:00					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									unit area		
$p_2 = 92 \text{ kPa} \qquad V_2 = ?$ $(1 \text{ mark}) \qquad p_1 V_1 \qquad = \qquad p_2 V_2$ $\frac{101 \times 2.3 \times 10^{-3}}{92} = \qquad V_2$ $\frac{101 \times 2.3 \times 10^{-3}}{92} = \qquad V_2$ $\frac{101 \times 2.3 \times 10^{-3}}{92} = \qquad V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{92} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{ m}^3}{100} = V_2$ $\frac{101 \times 10^{-3} $	Ja(I)	or Force per m ²	r ressure is calcuated					Torce per	unit area		
9a(ii) 2.5x10 ⁻³ m ³ (1 mark) $p_1V_1 = p_2V_2$ $\frac{101 \times 2.3 \times 10^{-3}}{92} = 92 \times V_2$ $\frac{101 \times 2.3 \times 10^{-3}}{92} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $\frac{101 \times 2.5 \times 10^{-3} \text{m}^3}{100} = V_2$ $101 \times 2.5 $				-			⁻³ m ³				
9a(ii) 2.5x10 ⁻³ m ³ (1 mark) 101 x 2.3x10 ⁻³ = 92 x V ₂ $\frac{101 x 2.3x10^{-3}}{92} = V_2$ 9a(iii) The (gas) particles collide with the walls (of the crisp packet). Pressure is caused by the particles inside a gas colliding with the walls of they container the gas in is. The faster te gas particles collide with the walls of the container the higher the pressure. $\hat{H} = 6.0 \mu \text{SV h}^{-1} \qquad H = ? \qquad t = 3.5 \text{hours}$ $\hat{H} = \frac{H}{t} \qquad \text{(1 mark)}$ $6.0 = \frac{H}{3.5} \qquad \text{(1 mark)}$ $H = 21 \mu \text{SV} \qquad \text{(1 mark)}$ $10a \qquad 2.6 \text{m} \qquad \text{d} = ? \qquad \text{v} = 240 \text{m s}^{-1} \qquad t = \frac{0.015s}{2} = 0.0075s \text{(1 mark)}$ $d = v \qquad \text{x} \qquad t \qquad \text{(1 mark)}$ $d = 340 \text{x} 0.0075 \text{(1 mark)}$ $d = 2.6 \text{m} \qquad \text{(1 mark)}$				$p_2 = 92$	2 кРа	$V_2 = ?$					
$\frac{101 \times 2.3 \times 10^{-3}}{92} = V_2$ $(1 \text{mark}) \frac{2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $(1 \text{mark}) \frac{2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $(1 \text{mark}) \frac{2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $(2 \text{mark}) \frac{1}{90} = V_2$ $(3 \text{mark}) \frac{1}{90} = V_2$ $(4 \text{mark}) \frac{1}{90} = V_2$ $(5 \text{mark}) \frac{1}{90} = V_2$ $(6 \text{mark}) \frac{1}{90} = V_2$ $(1 \text{mark}) \frac{1}{90} = V_2$ $(2 \text{mark}) \frac{1}{90} = V_2$ $(3 \text{mark}) \frac{1}{90} = V_2$ $(4 \text{mark}) \frac{1}{90} = V_2$			(1	mark)	p_1V_1	=	p_2V_2				
$\frac{101 \times 2.3 \times 10^{-3}}{92} = V_2$ $(1 \text{mark}) \frac{2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $(1 \text{mark}) \frac{2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $(1 \text{mark}) \frac{2.5 \times 10^{-3} \text{m}^3}{92} = V_2$ $(2 \text{mark}) \frac{1}{90} = V_2$ $(3 \text{mark}) \frac{1}{90} = V_2$ $(4 \text{mark}) \frac{1}{90} = V_2$ $(5 \text{mark}) \frac{1}{90} = V_2$ $(6 \text{mark}) \frac{1}{90} = V_2$ $(1 \text{mark}) \frac{1}{90} = V_2$ $(2 \text{mark}) \frac{1}{90} = V_2$ $(3 \text{mark}) \frac{1}{90} = V_2$ $(4 \text{mark}) \frac{1}{90} = V_2$		2.5x10 ⁻³ m ³									
	9a(ii)		(1	mark) 1	l01 x 2.3x10) ⁻³ = 9	92 x V ₂				
9a(iii) The (gas) particles collide with the walls (of the crisp packet). The (gas) particles collide with the walls (of the crisp packet). The faster te gas particles collide with the walls of the container the higher the pressure.				_1	l01 x 2.3x10) ⁻³ _	V ₂				
The (gas) particles collide with the walls (of the crisp packet). Pressure is caused by the particles inside a gas colliding with the walls of they container the gas in is. The faster te gas particles collide with the walls of the container the higher the pressure.					92	_	V Z				
9a(iii) collide with the walls (of the crisp packet). The faster te gas particles collide with the walls of the container the higher the pressure.			(1	mark)	2.5x10 ⁻³ m	3 =	V_2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, , , ,		the partic	cles inside a g	as colliding wit	h the wa	alls of they	container		
$\dot{H} = 6.0 \mu \text{Sv} \text{h}^{-1} \qquad \qquad H = ? \qquad \qquad t = 3.5 \text{hours}$ $\dot{H} = \frac{H}{t} \qquad \qquad (1 \text{mark})$ $6.0 = \frac{H}{3.5} \qquad \qquad (1 \text{mark})$ $H = 21 \mu \text{Sv} \qquad (1 \text{mark})$ $d = ? \qquad \text{v} = 240 \text{m} \text{s}^{-1} \qquad t = \frac{0.015 \text{s}}{2} = 0.0075 \text{s} (1 \text{mark})$ $d = v \text{x} t (1 \text{mark})$ $d = 340 \text{x} 0.0075 (1 \text{mark})$ $d = 2.6 \text{m} \qquad (1 \text{mark})$ $10b(i) \qquad Working shown to calculate 45000Hz \qquad f = ? \qquad N = 9 \text{waves} \qquad t = 2.0 \text{x} 10^{-4} \text{s} f = \frac{N}{t} \qquad \frac{9}{2.0 \text{x} 10^{-4}} = 45000 \text{Hz} $	9a(iii)		_	icles collic	he with the w	alls of the conta	ainer the	higher th	e pressure		
9b $ 21 \mu \text{SV} $ $ 6.0 = \frac{H}{3.5} \qquad \text{(1 mark)} $ $ H = 21 \mu \text{SV} \qquad \text{(1 mark)} $ $ d = ? \qquad \text{V} = 240 \text{m s}^{-1} \qquad t = \frac{0.015 \text{s}}{2} = 0.0075 \text{s} \; \text{(1 mark)} $ $ d = v \text{X} \qquad t \qquad \text{(1 mark)} $ $ d = 340 \text{X} 0.0075 \; \text{(1 mark)} $ $ d = 2.6 \text{m} \qquad \text{(1 mark)} $ $ d = 2.6 \text{m} \qquad \text{(1 mark)} $ $ d = 2.6 \text{m} \qquad \text{(1 mark)} $ $ d = 2.0 \text{x} \qquad \text{(1 mark)} $ $ d = 2.0 \text{x} \qquad \text{(1 mark)} $ $ d = 2.0 \text{x} \qquad \text{(1 mark)} $		(or the ensp packet):		iores come			unier en				
9b			·		<u> </u>	− (1 ma	ırk)				
	۵h	21			11 1	t `	·				
$H = 21 \mu \text{SV} \qquad \text{(1 mark)}$ $d = ? \qquad \text{V} = 240 \text{m s}^{-1} \qquad \text{t} = \frac{0.015 \text{s}}{2} = 0.0075 \text{s} \; \text{(1 mark)}$ $d = \text{V} \qquad \text{X} \qquad \text{t} \qquad \text{(1 mark)}$ $d = 340 \qquad \text{X} \qquad 0.0075 \; \text{(1 mark)}$ $d = 2.6 \text{m} \qquad \text{(1 mark)}$ $\text{Fe?} \qquad \text{N} = 9 \text{waves} \qquad \text{t} = 2.0 \text{x} 10^{-4} \text{s}$ $\text{f} = \frac{\text{N}}{\text{t}} = \frac{9}{2.0 \text{x} 10^{-4}} = 45000 \text{Hz}$	30	21 μ3ν			$6.0 = \frac{1}{2}$	H	rk)				
$d=? \qquad v=240 \text{ m s}^{-1} \qquad t=\frac{0.015 \text{s}}{2}=0.0075 \text{s} \text{ (1 mark)}$ $d=v x t \text{ (1 mark)}$ $d=340 x 0.0075 \text{ (1 mark)}$ $d=2.6 \text{ m} \qquad \text{ (1 mark)}$ $f=? \qquad N=9 \text{ waves} \qquad t=2.0 \text{ x} 10^{-4} \text{ s}$ $f=\frac{N}{t} = \frac{9}{2.0 \text{ x} 10^{-4}} = 45000 \text{ Hz}$					J	.5					
10a 2.6 m $ d = v \times x + t \text{ (1 mark)} $ $ d = 340 \times 0.0075 \text{ (1 mark)} $ $ d = 2.6 \text{ m} \text{ (1 mark)} $ $ d = 2.6 \text{ m} \text{ (1 mark)} $ $ f = ? + N = 9 \text{ waves} + t = 2.0 \times 10^{-4} \text{ s} $ $ f = \frac{N}{t} = \frac{9}{2.0 \times 10^{-4}} = 45000 \text{ Hz} $						-					
10a 2.6 m d = 340 x 0.0075 (1 mark) d = 2.6 m (1 mark)			d = ?	v = 240) m s ⁻¹	$t = \frac{0.015s}{2} =$	0.0075s	(1 mark)			
	10a	2.6 m	d = v								
10b(i) Working shown to calculate 45000Hz				d	= 340	x 0.0075 (1 m	nark)				
10b(i) Working shown to calculate 45000Hz $ f = \frac{N}{t} = \frac{9}{2.0x10^{-4}} = 45000 \text{ Hz} $				d							
calculate 45000Hz $f = \frac{1}{t} = \frac{1}{2.0 \times 10^{-4}} = 45000 \text{ Hz}$		Working shown to	f = ?					x10 ⁻⁴ s			
	10b(i)	=					0 Hz				
10b(ii) One answer from: Speed of sound in air is the same The distance is the same	10b(ii)	One answer from:	Speed of sound	· · · · · · · · · · · · · · · · · · ·		•	distance	is the sam	ie		

11-	P: Ultraviolet		EM Type Energy	Gamma High	X	Ray Ultr	a-violet	Visible Infra-	Red Microwave	Radio & TV
11a	Q: Infrared		Frequency	High	4					Low
			Wavelength	Low	_				<u> </u>	High
11b	Answer to include:	•	Radio Wave Longest Wa		th	Radio wave		ction is greater wh e longest wavelen		th is longer. f electromagnetic radiation
11c(i)A	Working showing calculation of wavelength	ν = 3.0x10	0 ⁸ m s ⁻¹	ν 3.0x	10 ⁸	= 2.42 = 0.1	f x10 ⁹ 2 m	= 2.42x10 ⁹ x λ x λ	HZ (1 mark) (1 mark)	λ = ?
11c(i)B	microwaves			gamma rays	X-r	ays P	Q Q 10 ⁻⁶ 1 wavelength	0-4 10-2	1 10 ²	
11c(ii)A	2.3x10 ⁻⁵ J	D =	$Gy = 5.0x10^{\circ}$ $\frac{E}{m} \therefore E$ mark)	-		<u>E</u> 4.5	E = ?	E = 5.0x1	.0 ⁻⁶ x 4.5	m = 4.5 kg = $2.3 \times 10^{-5} \text{ J}$ (1 mark)
11c(ii)B	5.0x10 ⁻⁶ Sv	H = ?	,		D = ! I =		O (10 ⁻⁶	W _r (1		(X-rays) = 1
12	Open ended question:	Candidate ha understanding c make some sta to the situatio understood at	1 mark as demonstrated a lim of the physics involve itement(s) that are re on, showing that they least a little of the pl in the problem.	d. They re elevant ph have stat	Candida easonab lysics in ement(tuation,	2 marks te has demonste understanding olved. They ment of that are releashowing that the stood the problem.	ng of the ake some vant to the hey have	involved. They shi situation and provide This type of respo involved, a relations respond to the probl	ow a good compreh e a logically correct nse might include a hip or an equation, a	understanding of the physics ension of the physics of the answer to the question posed. statement of the principles and the application of these to es not need to be 'excellent' or
13a	Answer to include:	1 mark		orbs diation e coun	ga	alpha ra Som Imma ra is able	e diatior to	radiation penetr	amma is able to	rate) (Source) Y is the only source with a reduction in count rate due to paper
13b(i)	One answer from:		n (uncharge er loses elect		n V		(uncha s elect	rged) atom		(uncharged) atom
13b(ii)	Answer to include:	1 mark	Alpha radi	•	-	nas a	Alpha	radiation Fewer alp	ha particle	s would reach creased distance
13b(iii)	7.5x10 ⁻⁸ C		For 96 spar For 1 spark	ks: Q = Q = Q =	I = 0. 7. 7.	I 12×10 ⁻⁶ 2 2×10 ⁻⁶ C 2×10 ⁻⁶ C 96 5×10 ⁻⁸ C	x x x	•	t (1 n (1 n	: = 1 minute = 60s nark) nark) nark)

14a(i)	background count rate	The background count rate should be subtracted from the count rate to the corrected count rate is a true measure of the activity from inside the boy.								
14a(ii)	60 days	Count rate halves from 2000 to 1000 counts per minute	00	Take any halving of the corrected count rate on the y-axis. Work out the time interval on the x-axis for this halving.						
14a(iii)	180 days	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
14a(iv)	4000 counts per minute	 1 half-life = 60 days ∴ 3 half-lives = 3x60 days = 180 days (1 mark) Half-life is 60 days. ∴ 0 days is one half-life before 60 days and the count rate at 0 days should be double the count rate at 60 days. At 60 days the count rate is 2000 days ∴ at 0 days the count rate should be double at 4000 counts per minute. 								
14b	Any suitable answer including:	tracers	sterilisation smoke detectors me	easuring thickness of paper						

